
Energy Management of Applications with Varying
Resource Usage on Smartphones

Anway Mukherjee, Student Member, IEEE, and Thidapat Chantem, Senior Member, IEEE

Abstract—The split-screen mode in smartphones allows for
the simultaneous side-by-side execution of multiple applications,
which permits multitasking and improves users’ experience.
However, such technology results in simultaneously running
multiple foreground processes, which increases the power con-
sumption of a smartphone and reduces its battery lifetime.
We present an integrated system-level resource management
framework that aims to minimize the total energy consumption
of a smartphone with negligible impact on the quality of service
(QoS) of applications whose resource usage characteristics are not
precisely known offline or vary over time. Our proposed solution
(1) leverages applications’ offline profiles to detect instantaneous
phase changes (i.e., dynamic changes in resource usage patterns)
of the workload of a given application at runtime, and (2)
adaptively adjusts both the voltage and frequency settings of the
processor and memory bandwidth to achieve the most energy-
efficient configuration subject to QoS constraints. Our approach
is also able to progressively reduce the energy consumption of
newly installed real-world applications for which there exists no
prior resource usage data. Experiments on a Nexus 6 smartphone
show that our approach achieves an average energy reduction of
23% (19%) and up to 31% (27%) compared to existing work
(and default Android governor) for different combinations of
real-world applications running side-by-side in split-screen mode.
For applications with no prior resource usage data, the proposed
framework saves up to 22% (18%) of energy within at most 14
seconds when compared to existing work (and default Android
governor).

Index Terms—Energy management, smartphones, application
profiles, phase detection, runtime adaptation, Android

I. INTRODUCTION

Smartphones continue to have more features and functional-
ity that have heretofore been limited to general-purpose com-
puting systems. This shift was due, in part, by technological
advances, and in part, to satisfy users’ increasing demands
for more performance, convenience, and versatility. To further
improve application quality of service (QoS) and/or system uti-
lization, designers have leveraged existing powerful hardware
designs, which were originally geared towards general-purpose
computing systems, to support multi-threaded, multi-process
applications on smartphones. For example, larger dynamic
random-access memory (DRAM) in smartphones allow several

Manuscript received April 3, 2018; revised June 8, 2018; accepted July
2, 2018. This paper was presented in the International Conference on Hard-
ware/Software Codesign and System Synthesis 2018 and appears as part of the
ESWEEK-TCAD special issue. This paper was recommended by Conference
Chairperson A. Shrivastava. (Corresponding author: Anway Mukherjee.)

The authors are with the department of Electrical and Computer
Engineering, Virginia Tech, Arlington, VA 22203. Emails: {anwaym,
tchantem}@vt.edu. This work was supported in part by the National Science
Foundation under Award Number 1618979.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2857323

applications to share the device screen simultaneously. That is,
a user could split the screen, viewing a web page on one side
while composing an email on the other side of the screen.
However, the main disadvantage of using such full featured
hardware design is the increase in power consumption, which
reduces battery life and may even cause overheating [1], [2].

Presently available battery technology has hit a power wall
in smartphones [3]; the Li-Ion/Li-Po battery has a simple
design, which is easy to mass-produce, but can keep pace with
neither the current software and hardware advancements [4]
nor increasing application demands. Due to the size and weight
constraints, large battery packs are unsuitable. While low
power modes can be enabled to extend battery life, the limited
functionality, e.g., no GPS, or degraded performance, e.g.,
dimmed display, may not be desirable.

Energy saving solutions for smartphones often focus on
enabling independent fine-grained power management of com-
ponents or subsystems at different layers of abstraction [5],
[6], [7], [8], [9], [10], [11]. However, micro-managing each
device/component is a challenge as the number of de-
vices/components can be large. For instance, smartphones
often have heterogeneous system-on-chip (SoC) designs, e.g.,
multi-core CPU, graphics processing unit (GPU), other hard-
ware accelerators such as a digital signal processor (DSP),
image signal processor (ISP) etc., and low power DRAM inte-
grated on a single chip. Peripherals may include GPS, modem,
wireless local area networks (WLAN), camera, and other off-
chip sensors. In addition, optimizing the energy consumption
of each component independently does not always result
in minimum system-wide energy consumption, especially as
the components must often inter-operate. For instance, the
overall system load is often used to adjust core voltage and
frequency settings to optimize application QoS. However, such
a technique ignores memory usage, which has been shown
to be application-specific [12] and which cannot be easily
captured by monitoring system load alone. Since the power
consumption of memory subsystems are now comparable to
that of processors [13], effective energy-aware designs must
not only consider the power consumption due to processor
cores but also due to memory and bus subsystems, especially
since all the peripheral devices integrated within a smartphone
has to rely on the memory subsystem to communicate with the
processor, and vice versa.

An effective system-level energy management solution must
also consider the varying resource usage pattern of an applica-
tion over time. Such patterns are difficult to determine offline
but can present significant power saving opportunities without
sacrificing QoS. We propose a coordinated energy manage-
ment solution that, for the first time, aims to reduce the energy

consumption of side-by-side applications on smartphones. The
main contributions are:

1) We design an application-aware dynamic voltage and fre-
quency scaling (DVFS) policy that jointly reduces the
energy consumption of processor cores and memory sub-
systems with negligible impact on QoS, and which does
not require application code instrumentation. The proposed
policy uses a catalog of offline profiles and an online
controller to select the most energy-efficient configuration
of the system without sacrificing performance.

2) We develop a runtime lightweight phase detection tool,
whose front-end resides in userspace while the back-end
is implemented in the Linux kernel, to account for instan-
taneous phase changes of an application by leveraging per-
core performance monitor unit (PMU) counters, memory
access pattern and system bus traffic. The tool allows us to
gain a better understanding of an application’s system-wide
resource usage in order to minimize its energy consumption.
Since the proposed technique does not require application
code instrumentation, it is applicable to both open-source
and proprietary applications, and also assists in the energy
management of newly installed applications for which no
prior resource usage data exists.

3) We validate our proposed approach and assess its per-
formance by comparing it with the most closely related
work [14], as well as the default Android governor, in a
multi-process environment by running typical real-world
applications side-by-side in split-screen mode in Android
Nougat on top of a Nexus 6 smartphone.
We implement our proposed solution on Android [15], as

it is the most widely used open-source mobile OS. While we
focus on the split-screen technology in this work, our adaptive
energy management framework can be applied to other multi-
threaded, multi-process application environments.

II. PRELIMINARIES

We present key background concepts and review existing
work on energy management of smartphones in this section.

A. Platform

Google Android [15] is an open-source mobile operating
system that is extensively used in smartphones. Android 7.0
and higher supports a split-screen mode where the system
fills the screen with two applications, (shown in Figure 1),
showing them either side-by-side or one above the other. The
user can drag the dividing line separating the two to make one
application larger and the other smaller. Starting with Android
Nougat, background applications are not allowed to run at
all to aggressively solve the problem of unbounded energy
consumption [1], [2]. The split-screen mode is a relatively
new Android solution to boost performance without having
background processes.

B. Related Work

Existing Android DVFS policies implemented through
device-specific governors [16], such as interactive,

Split-Screen Window #1

Split-Screen Window #2

Fig. 1. A screenshot of split-screen execution in Android Nougat, where the
top window runs Facebook while the bottom window simultaneously runs a
web browser. The dimensions of the split-screen can be altered by dragging
the black bar separating the two windows.

ondemand and performance, primarily focus on QoS
instead of system-wide energy consumption and, hence, fail
to achieve an optimal energy-efficient policy when used in
popular applications [12], [17]. In addition, existing solutions
are applicable to only a small subset of popular Android
applications [18], [19] or performance benchmarks and micro-
benchmarks, and were either tested on software simulators or
open-source development boards [20], [21], [22].

We broadly classify energy management techniques for
mobile embedded systems into three categories. In the first cat-
egory, the aim is to develop an improved power-performance
DVFS policy by considering one or multiple components of
the system [23], [5], [6], [7], [24], [25], [26], [27]. However, to
the best of our knowledge, there is no general policy that col-
lectively manages all the components at once without requiring
that application code be publicly available. In the second
category, DVFS, dynamic power management (DPM) and/or
dynamic thermal management (DTM) are used to develop
predictive energy-aware system-level policies [9], [10], [11],
[28], [29]. Drawbacks of this type of solutions are (i) backward
compatibility issues and (ii) that it requires detailed knowledge
of the system P-states, which may be difficult to obtain in
proprietary software and devices. Finally, in the third category,
the goal is to develop workload characterization techniques to
support application-level analysis and optimization [30], [31],
[32], [33], [34]. However, the major limitation of such an
approach is the potential lack of support in both hardware
and software; existing software profilers either do not capture
the fine-grained changes in memory access patterns over time
or require code-level instrumentation. Our solution, on the
other hand, can be implemented as a lightweight userspace
software that is suitable for smartphones with limited built-in
functionality.

Rao et.al. [12] establishes the need for an application-
specific, performance-aware energy management framework
for Android devices, and showed that a coordinated control of
system-wide components can save up to 32% energy compared
to the default Android governors. Similar work by Liang et
al. reported that reducing the CPU frequency may not always
improve the energy consumption of the system [14]. However,
these work either do not consider memory bandwidth manage-
ment or platforms with multiple applications on split-screen.

We bridge the gap in existing research by (i) designing an
integrated energy management framework that does not re-
quire application code to reduce the system-wide energy con-
sumption of side-by-side applications on smartphones while
preserving QoS, (ii) enabling further energy savings via the
detection of instantaneous phase changes of applications, and
(iii) conducting experiments on an actual smartphone to assess
the energy savings and resultant QoS level of the proposed
framework.

III. PROPOSED FRAMEWORK

It has been shown that energy management approaches
that independently consider components of a smartphone lead
to sub-optimal solutions [12]. Similarly, energy management
schemes that ignore changing resource usage of applications
fail to optimize the total system energy consumption [14].
Our aim is to minimize system-wide energy consumption with
negligible impact on QoS on smartphones running multiple
applications side-by-side. As previously discussed, side-by-
side execution through split-screen adds to the energy demand
as opposed to the traditional foreground-background task
execution model since all processes sharing the device screen
run with equal activity context. While we restrict the number
of applications sharing the split-screen to two in this work,
our approach can readily be extended to multiple applications
on split-screen. In our work, the QoS metric is the makespan
of a given application, as it is applicable to both compute-
intensive and memory-intensive workloads. Note that other
metrics can be used. In addition, since our approach requires
a fine-grained QoS metric, i.e., one that can change in a small
time interval, to find an energy-efficient frequency and voltage
settings for the CPU and memory subsystem, we use the
normalized instructions per cycle (IPC), as described later in
Eq.1, within the framework.

Our proposed application-aware integrated energy manage-
ment framework is shown in Figure 2. We decouple our work
into a two-step procedure: offline and online components.
First, we run applications side-by-side through our offline
profiling phase (Section IV) to assist in informed decision
making online. We also catalog offline profile data into cat-
egories of applications for the runtime energy management
of applications which do not have offline profile data (Sec-
tion VII-B). Second, at runtime, an online controller frame-
work (Section VI) is executed periodically to select the best
energy-performance configuration in order to minimize the
system-wide energy consumption with negligible performance
degradation. The online controller relies on an online phase de-
tector (Section V), which monitors the resource usage pattern

LOOK UP TABLE (LUT)

QoS POWER

OFFLINE
 PROFILER

(SECTION IV)

APPLICATION
TO BE

PROFILED

SIDE-BY-SIDE APPLICATIONS

CONFIG

x x#1

x x#2

x x#3

PER-APPLICATION

 PHASE
DETECTOR

(SECTION V C)

OFFLINE ONLINE

L1 CACHE
MONITOR

(SECTION V A)

L2 CACHE
MONITOR

(SECTION V B)

 CONTROLLER
(SECTION VI)

#1 #2

#3 #4

PER-CORE FREQ

MEMORY
BANDWIDTH

SELECTED
CONFIG

LUT

PER
APPLICATION

LIGHT WEIGHT
APPLICATION

APPLICATION
#1

RUNNING

SIDE-BY-SIDE APPLICATIONS

LIGHT WEIGHT
APPLICATION

Fig. 2. The proposed framework is decoupled into (i) running applications
side-by-side in offline profiling phase (left), and (ii) an online framework to
select the best energy-performance configuration (right).

TABLE I
DVFS CONFIGURATIONS FOR NEXUS 6

CPU Freq (GHz) Level
0.3000 1
0.4224 2
0.6528 3
0.7296 4
0.8832 5
0.9600 6
1.0368 7
1.1904 8
1.2672 9
1.4976 10
1.5744 11
1.7280 12
1.9584 13
2.2656 14
2.4576 15
2.4960 16
2.5728 17
2.6496 18

Mem Bandwidth (MBps) Level
762 1
1144 2
1525 3
2288 4
3051 5
3952 6
4684 7
5996 8
7019 9
8056 10

10101 11
12145 12
16250 13

of an application over time, along with the offline profiles, to
select the voltage and frequency levels of associated cores and
memory subsystem that minimizes the energy consumption
without sacrificing the target QoS.

IV. OFFLINE PROFILING

The goal of the offline profiler is to obtain the average
performance data and energy consumption data for a given
application under all CPU frequency and memory bandwidth
combinations (Table I). Each such combination, which is rep-
resented by the tuple (CPU Frequency, Memory Bandwidth),
constitutes a system configuration. A lookup table (LUT) is
constructed for each application and offers information on the

TABLE II
AN EXAMPLE APPLICATION-SPECIFIC LUT

Config CPU Freq Mem Bandwidth Normalized Power
(GHz) (MBps) IPC (mW)

1 0.3000 762 1 2172.9
2 0.3000 1525 1.2 2170.0
3 0.6528 1525 1.3 2288.3
4 0.6528 2288 1.5 1657.6
5 0.7296 2288 1.5 1422.8

relationship among a given system configuration, performance,
and power consumption. Each entry of the LUT contains the
following parameters: CPU frequency, memory bandwidth,
normalized IPC, and energy metric. As discussed in the
previous section, while our overall QoS metric is the makespan
of an application, we use the normalized IPC, ˜IPC i, for the
ith system configuration (see Table II), inside our framework
for fine-grained tuning. The IPC is normalized with respect
to IPC 1, i.e., the system configuration with the lowest CPU
frequency and memory bandwidth, and defined as,

˜IPC i =
IPC i

IPC 1
, (1)

where IPC i is the average IPC of the ith system configuration
(Table II).

The energy metric contains the system-wide power con-
sumption obtained while running an application under the
corresponding system configuration. An example application-
specific LUT is shown in Table II. For the information con-
tained in the LUTs to be useful online when applications exe-
cute side-by-side, we must account for the competing resource
demands by the other side-by-side application. Therefore, we
run a standard lightweight application in split-screen while
performing our offline data collection. In this work, we select
the Android emailing service as the lightweight application,
but other applications can be used as well. The selection of
the most suitable application is left for future work.

We also broadly categorize any combination of applications
into compute intensive, memory intensive or peripheral inten-
sive. This assists in the decision making when managing the
energy consumption of applications which do not have prior
offline profile data (Section VII-B). In this way, we limit the
amount of data that must be stored in the LUT (Section VII-A)
while allowing for judicious energy management decisions to
be made online.

V. ONLINE PHASE DETECTION

Broadly, an application may have computation intensive
phases and memory intensive phases. An application has a
computation intensive phase if, within some time interval, the
application spends most of its time on the CPU. Similarly,
an application enters a memory intensive phase if, within
some time interval, the application spends most of its time
fetching/sending data from/into the main memory. An in-
stantaneous phase change is defined as the transition from a
computation intensive phase to a memory intensive phase, and
vice versa. Detecting the instantaneous phase change of an

application, along with the CPU load and memory footprint,
would allow us to (a) understand the application behavior
and its resource usage pattern, and (b) distinguish different
application’s phases to target either CPU frequency or memory
bandwidth optimization.

The application-specific per-core CPU activity tool, Perf
[8], can monitor the CPU intensive phases of the applications.
In addition to the CPU load, an application memory footprint
is a crucial piece of information that can be used to analyze and
improve the memory bandwidth utilization of an application,
which can, in turn, reduce energy consumption. This is espe-
cially important in Android applications as they are notorious
for poor data and instruction locality [35]. Since many small
embedded systems lack built-in support for obtaining an ap-
plication’s accurate memory footprint due to size, weight and
power constraints, we propose a memory traffic monitoring
mechanism to enable phase detection on smartphones. In this
section, we describe our fine-grained measurement method of
the load serviced by the L1 private cache and a shared last
level cache (LLC) through cache monitors, and the proposed
dynamic phase detection mechanism for applications in split-
screen mode.

A. L1 Cache Monitor

A major step towards predicting phases of an Android
application is to analyze and detect sharp changes in memory
access patterns. Our goal is to find out per-core L1 cache
misses to account for the average percentage contribution
of each core on the aggregate L2 cache outgoing traffic to
be serviced by the main memory. The L1 cache traffic is
measured in Megabits per second (Mbps). Since Perf does
not report on per application per-core L1 cache statistics
on Android OS, we leverage the performance monitor units
(PMUs) and use them as software event counters. Each PMU
counter can be programmed to monitor and register a list of
L1 cache events. (Smartphones usually are multi-core systems
where each core has a set of PMUs.) In our solution, the
per-core per-application data is stored in a hash table which
resides inside the global stack of the Linux scheduler. A
custom syscall redirects the data to the userspace where we
implement our online controller. If such data is made available
through proprietary drivers, we could have the framework
implemented entirely in userspace. A flowchart depicting the
L1 cache monitor is shown in the left side of Figure 3. The
L1 cache monitor polls the amount of per-core, per-application
memory traffic from private L1 caches to the shared L2 cache.

B. Last Level Cache Monitor

Having recorded the L1 cache traffic, we now need to
determine the aggregate outbound LLC traffic serviced by the
main memory to predict application phase changes. The LLC
miss traffic, along with the application-specific per-core L1
cache traffic, accounts for the average percentage contribution
of each core on the aggregate LLC outgoing traffic. This cache
traffic is also measured in Megabits per second (Mbps). In
our solution, we utilize the system specific hardware PMU
(attached to the LLC), and its dedicated driver implementation

LAST LEVEL CACHE

MAIN MEMORY

HARDWARE MONITOR

GOVERNOR

DRIVERCPU GPU AP

START DATA
REPRESENTATION APP

RUN PROFILING SCRIPT

FIND APP PID

START APP ON DEVICE

PID APP COMM

START POLLING

ASSIGN PID VALUE
 TO MONITOR

READ NODE
SPECIFIC DATA

CREATE PROCFS NODE

LOAD KERNEL MODULE

L1 Cache Monitor L2 Cache Monitor

Fig. 3. Flowcharts depicting the L1 cache monitor (left) and the LLC
cache monitor, with steps for determining the aggregate outbound LLC traffic
serviced by the main memory (right).

#1

Private L1 $

Cores

Unified L2 $
LLC

Per-core L1 $ Monitor

PERIPHERALS

DMA ACCESS

MAIN MEMORY

APPLICATION
 PINNED TO CORE

APPLICATION
SPECIFIC

 PER-CORE
% L1 TRAFFIC

CORE #1
PINNED APPLICATION

% L2 FOOTPRINT

CORE #2
PINNED APPLICATION

% L2 FOOTPRINT

CORE #3
PINNED APPLICATION

% L2 FOOTPRINT

CORE #4
PINNED APPLICATION

% L2 FOOTPRINT

#2 #3 #4

L2 $ MONITOR

UNIFIED
L2 $ TRAFFIC

TO MAIN MEMORY

Fig. 4. Application phase detection using (1) application-specific per-core L1
traffic directed to the shared LLC, and (2) the LLC cache traffic flowing to
the main memory.

in the kernel, to export the data related to the LLC activity
to userspace for further analyses, as shown in the right side
of Figure 3. The LLC PMU hardware counter polls every
10 ms for the amount of traffic directed towards the system
main memory. Therefore, all data collection mechanisms are
also activated every 10 ms. In contrast, the polling frequency
of Perf is limited to 100 ms1, which is inadequate for fine-
grained energy management. In addition, while in our case, the
Nexus 6’s LLC is the L2 cache, our approach can be extended
to an arbitrary number of cache levels.

C. Phase Detector

We now discuss how to use the data from the L1 and
LLC cache monitors, and application specific per-core CPU
activity using Perf, to detect the phase change of an appli-
cation, which will permit the controller (Section VI) to save
energy without severely affecting the QoS of an application.
Since running side-by-side applications simultaneously poses
a problem of data coalescence on shared resource similar to
multi-process execution, we pin an application to specific core-
group(s) to isolate the memory footprint of each application.

1For the Nexus 6, Perf taps into the PMU framework of the Krait 450
processor through system calls, which is a major reason for its coarse-grained
polling intervals.

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

Time (s)

L
2

$
 R

e
a

d
+

W
ri

te
 T

ra
ffi

c
(i

n
 M

B
p

s)

Fig. 5. Memory traffic data directed to and from the main memory from the
L2 cache due to Youtube while running side-by-side with the default Android
emailing service application on Nexus 6 over time. The data clearly shows
periodic surges in data traffic going into the main memory.

The application-specific per-core data traffic between the CPU
and the main memory can now be dynamically monitored by
(1) collecting per-core L1 traffic directed to the shared LLC,
and (2) the LLC cache traffic flowing to the main memory, as
shown in Figure 4.

Figure 5 reports the amount of traffic that is directed to
the main memory from the L2 cache due to Youtube while
running side-by-side with the default Android emailing service
application on Nexus 6. It shows the distinct, periodic memory
traffic pattern when we run the application for an extended
period of time. We can define each region of high memory
activity as a memory intensive phase of the application in
question. Similarly, the CPU activity monitor (using Perf)
also shows the CPU intensive phases of the applications.
Distinguishing consecutive phases of an application requires
the following steps. We record offline the minimum change
in cache traffic that would cause a change in the memory
bandwidth under the default Android governor, and quantify
it as the sensitivity level (S) of the application under con-
sideration. At runtime, we use Perf over a constant time
interval to monitor the percentage usage of the CPU for
computation by the application, which is reflected by the IPC
value. Similarly, we use the memory footprint monitors (L1
and LLC cache monitors) over the same time interval to record
the application-specific data exchange. We then calculate the
variance in application sensitivity level S with respect to both
CPU computation and memory traffic as

Uj = S × IPCi(
out L1 traffic
out L2 traffic

) , (2)

where the resource utilization Uj , pj ∈ P, represent the per-
core per-application resource utilization of a processor core
pj . If Uj

S ≤ 1, a memory intensive phase of the application
is detected. Otherwise, when Uj

S > 1, a CPU intensive phase
of the application is observed. For applications for which no
offline profile data exists, we classify them based on the closest
matching offline profile.

Once we can distinguish the different phases of an applica-
tion, the next logical step would be to optimize these phases
for a system-wide minimal energy consumption configuration
with negligible impact on QoS, as discussed next.

VI. CONTROLLER

The goal of the online controller is to achieve energy
optimization while maintaining an acceptable application QoS
level. The controller maintains the target QoS of an application
by using the information from the phase change detector and
the LUTs to calculate the current QoS and energy consumption
values, and prescribe corrective measures. We construct our
online controller based on the approach taken by Imes et
al. [24]. The inputs to the controller are (1) the LUT table
for a given application (Table II), and (2) a reference QoS
value, Pref , for the controller to maintain. To maintain QoS,
a proportional integral (PI) controller is used. (Based on our
results, a more sophisticated controller is not necessary but
can be applied.) Our online PI controller provides the output
according to

co = cobias + kc · e(t) +
kc
t
·
∫

e(t)dt, (3)

where co is the controller output, cobias is the controller bias,
kc is the controller gain, e(t) = |Pref − Pmeasured | is the
controller error, and t is the controller period. The training
period (offline) for the controller consists of running each
application (for which an offline profile exists) multiple times
until the controller selects a configuration that results in P ref

on average. This allows us to record the tuning parameter
values, kc and cobias , for each application beforehand.

At runtime, the controller is executed as a daemon task
while the Android applications of interest run in the fore-
ground in split-screen mode. At the beginning of each con-
troller period t, the controller computes e(t) and uses it to
react accordingly in the next controller cycle. In contrast to
the work by Imes et al.[24], we replace the Kalmann filter
with our online phase detector. The controller output, co,
is the required QoS value an application must attain during
the current period to maintain P ref . The value co translates
to the desired configuration level of the application and is
used as a reference to select the most energy-efficient system
configuration from the lookup table (Table II). As will be
shown in Section IX-D, the overhead of our proposed online
phase detector and controller is negligible. We now discuss
two methods to make our work more practical in the next
section.

VII. PRACTICAL FACTORS

We now discuss two potential limitations to our proposed
framework, and present solutions to tackle them.

A. Limiting LUT Storage Cost

A major driving force for a learning-based offline profiling
approach proposed by Rao et al.[12] is to prevent the LUTs
from occupying considerable memory space. A major concern
especially for smartphones with limited memory would be
the limitations on the space required to store performance,
memory traffic, and energy consumption data in a LUT for
a potentially large number of application combinations which
may run side-by-side simultaneously.

Dong et al.[36] analyzed the memory access patterns of
Android applications and reported the extensive use of native
shared libraries among a large number of Android applica-
tions. That is, for any pair of applications, one application’s
shared libraries are often accessed by the other, resulting in
similar memory access patterns. These results suggest that
by judiciously managing shared libraries, instruction access
efficiency as well as the overall performance can be improved.
Our approach relies on these findings [36]. Specifically, we
limit the storage requirement of our approach by maintaining a
catalog of offline profiles, each of which encompasses a set of
applications with similar resource usage patterns (CPU usage,
memory, peripheral IP usage, etc.). That is, we classify each
set of applications as compute-intensive, memory-intensive or
peripheral-intensive. While compute-intensive and memory-
intensive applications have high CPU utilization and high
CPU-memory interactions, respectively, peripheral-intensive
applications, on the other hand, attribute neither to high CPU
utilization nor high CPU-to-memory bandwidth usage. Rather,
these applications execute on peripheral IPs while accessing
the main memory through a separate system bus. The actual
number of offline profiles for each set of applications can
be selected based on the available memory space on a given
system. Note that each entry into the catalog is accompanied
by an application’s unique identifier (app_comm) and its
corresponding reference sensitivity level (S). This facilitates a
unique index to each LUT entry.

B. Applications without Offline Profiles

For applications that are newly introduced into the system
and for which profiles are not readily available, we propose
to leverage the existing catalog of offline profiles and the
online controller to achieve an improved performance-energy
configuration.

For newly installed applications, we select the most similar
profile from the catalog of existing offline profiles by (i)
running the newly installed application to analyze its processor
utilization characteristics, as well as memory access patterns
(and S) and, (ii) browsing through our list of readily available
offline profiles stored in the system to find the closest match
to our newly installed application. We then use the online
controller to adapt to the new applications by tuning the
controller output to converge to the targeted QoS in the least
number of iterations. As will be shown in Section IX-B, an
application with no offline profile will only need to run for at
most 14 seconds before the proposed framework can achieve
significant energy reduction with negligible QoS degradation.
Once complete and the controller tuning parameters recorded,
later reruns of the application will not require a second
tuning, provided the side-by-side execution behavior pattern
and system workload do not change.

VIII. EXPERIMENTAL SETUP

We next describe our experimental platform, as well as the
application benchmarks and evaluation criteria that were used
to assess the effectiveness of our approach.

TABLE III
NEXUS 6 HARDWARE SPECIFICATIONS

Component Specification
SoC Qualcomm Snapdragon 805
CPU Krait 450 (quad core running at 2.7GHz)
RAM 3GB LPDDR3
Flash 32GB
Sensors Accelerometer, GPS, Gyro, Baro
GPU Adreno 420
Wifi 802.11 a, b, g, n, ac, dual-band
Battery Li-Po 3220 mAh

A. Experimental Platform and Settings

We implemented and tested our energy management frame-
work on a Nexus 6 smartphone, whose hardware specifications
are listed in Table III. The Nexus 6 extends a user-level driver
support to implement various DVFS policies on the main
memory. The Qualcomm Snapdragon chip set is augmented
by a piece of hardware attached to the LLC, which serves
to monitor real-time LLC traffic, though this feature was not
exposed to users. Our implementation exports the hardware-
dependent statistics of cache subsystems to userspace. Nexus
6 runs Android Nougat, which introduced side-by-side exe-
cution in split-screen mode where multiple applications can
simultaneously run with similar foreground context. In our
target system, i.e., the Nexus 6 smartphones, the LLC is the
L2 cache.

We now provide some specific details for the purpose of
reproducibility of results. Before performing offline profil-
ing, the following options were disabled: USB charging
to record accurate system-wide power consumption and
mpdecision to prevent CPU-hotplugging. In addition, the
CPU_freq_boost configuration flag was disabled to make
sure touching the screen does not inadvertently cause the
CPU frequency to increase, as this may lead to erroneous
data collection. We reduced screen brightness to 50% and the
Wifi module was kept on to simulate a common de facto
smartphone runtime interference. We run our side-by-side ap-
plication simultaneously with the default Android mail service
application on the split screen. This allows us to simulate a
system environment with application interference on shared
resources. We pin each side-by-side application to specific
core-group(s), as this allows us to monitor application memory
footprint in isolation. In addition, we use Monkey [37] to
generate pseudo-random user behaviors in our experiments for
reproducibility.

In our setup, the energy consumption is measured using the
OS-level battery readings; Android exports the battery status
through system-level sysFS nodes, both for instantaneous
current (mA) and instantaneous voltage (mV). We deployed
a daemon module to record the current and voltage readings
to obtain the instantaneous power usage, and subsequently, the
system-wide energy consumption during our experiments.

B. Applications with Offline Profiles

A set of five real-world applications was selected as our
benchmark suite, as each application has unique CPU and

memory requirements. We briefly introduce each application
next and note its length of evaluation. We run each application
side-by-side simultaneously with the default Android emailing
service application to generate an offline profile, categorize the
applications, and record and catalog the offline data in a LUT
for each application as shown in Table II.

1) VidCon: A video converter application which uses a
specific library to convert videos to different formats. VidCon
is primarily a memory-intensive application. It relies less
on the CPU and more on hardware accelerators. For our
experiments, we converted an mp4 video using the default
configurations.

2) MobileBench: An established browser benchmark. This
application shows patterns of stark switches between CPU-
intensive and memory-intensive phases. The benchmark loads
a collection of website contents onto the phone memory. It
offers automatic horizontal and vertical zooming and scrolling
as well. The benchmark uses the Chrome browser application
to run the tests.

3) Pokemon Go: A popular Android gaming application.
This application shows constant increase in memory band-
width usage throughout its run with sharp shifts to the GPU-
intensive phase. Since this application is GPU-intensive, we
have very low CPU usage with very high memory bandwidth
usage. The game is manually played for 200 s during our
experiments.

4) Facebook: A popular internet based social media and
networking application. We selected the videoplayer feature of
this application and initiated long videos for our experiments.
As this is a highly optimized application, Facebook shows
sharp increase in CPU and memory usage only when the
application is active. We tested the application for 200 s during
our experiments.

5) Spotify: An established audio and video streaming appli-
cation. This application is tested for 200 s with songs being
changed every 20 s. This application shows very high CPU
usage with sharp switches to memory-intensive phases during
its run.

C. Applications without Offline Profiles

For applications whose performance-energy profiles are not
available (Section VII-B), we selected another set of five
real-world applications as our test suite. We assume that we
have prior knowledge of the already existing applications
(Section VIII-B) which have their offline profiles stored in
the system and that each new application has similar resource
usage patterns as the applications listed in Section VIII-B. (In
Section IX-B, we discuss cases where this assumption does
not hold.)

1) Media Converter: A video converter application which
uses a specific library to convert videos to different
formats.

2) Android Browser: The default browser in the Android
vanilla OS. The application is used for browsing, viewing
images and video playback.

3) Fruit Ninja: Another popular Android gaming application,
similar to Pokemon Go mentioned in Section VIII-B.

4) Youtube: A video sharing application which allows its
users to upload, share and view videos online. It offers a
diverse category of both amateur and professional video
archive.

5) Amazon Music: A popular audio and video streaming
application.

D. Evaluation Metrics

The performance metrics of interest are the resultant QoS
level and system-wide energy consumption. As previously
discussed, the QoS of an application can depend on a number
of factors such as IPC, latency, throughput, etc. Since most
Android applications are available as code obfuscated APKs,
we focus on IPC and application makespan, as they take into
account both CPU and memory performance and are sensitive
to system workload. They are also application neutral.

We compared our approach against Android’s default gov-
ernors (DG), as our work is the first to consider the side-by-
side execution model. While other governors exist in Android,
the default policies were selected since changing governors
require root privilege. In addition, the other Android governors
are unsuitable for energy-QoS optimization for a number
of reasons. Namely, both OnDemand and Performance
have the tendency to use the maximum frequency, resulting
in excessive energy usage. On the other hand, Powersave
tends to select the lowest frequency, thus sacrificing QoS.
Interactive, which is the CPU default governor, is more
responsive to changing system loads. Similar arguments can be
made for device governors. To further validate our approach,
we compare against the most closely related work by Liang
and Lai [14], henceforth referred to as CS, which is a critical-
speed based DVFS technique that adjusts CPU frequency but
not memory bandwidth.

IX. RESULTS

Our experimental results pertaining to various applications
and test scenarios, as well as a discussion on the overhead of
the proposed approach, is provided in this section.

A. Applications with Offline Profiles

For applications that were profiled offline, we report the
average value for performance and energy over 10 runs per
benchmark in Table IV. Figures 6 and 7 compare the per-
centage of total execution time spent on different frequency
and bandwidth levels between our approach and DG. Note
that the frequency and bandwidth levels for CS are not shown
to maintain readability, as using CS results in a very limited
number of CPU frequencies for a large percentage of time
and 100% of time on a single memory bandwidth. In general,
our approach, when compared to the default governor, is able
to save a significant amount of energy for all applications
considered, albeit with small hits in IPC of less than 2%
and with an average increase in makespan of up to 3%. In
contrast, our approach, shows an overall improvement of 23%,
4% and 6% on energy savings, application IPC, and makespan,
respectively, when compared to CS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20

25

30
VidCon

Default Governor Proposed Approach

DVFS Frequency Levels

%
 o

f T
im

e
 S

p
e

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20

25
MobileBench

DVFS Frequency Levels

%
 o

f T
im

e
 S

p
e

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20
Pokemon Go

DVFS Frequency Levels

%
 o

f T
im

e
 S

p
e

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20
Facebook

DVFS Frequency Levels

%
 o

f T
im

e
 S

p
e

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20

25

30
Spotify

DFVS Frequency Levels

%
 o

f T
im

e
 S

p
e

n
t

Fig. 6. Percentage of total execution time spent on different CPU frequency
levels (Table I) when using DG and the proposed approach. For CS, a very
limited number of CPU frequencies are selected and thus not included to
maintain readability.

1) VidCon: As shown in Figure 6, using the default gover-
nor, the cores spent more than half of the time executing at the
highest frequency. This is because DG blindly sets the same

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8

10

12
VidCon

Default Governor Proposed Approach

DVFS Bandwidth Levels

%
 o

f T
im

e
 S

p
e

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13
0
2
4
6
8

10
12
14

MobileBench

DVFS Bandwidth Levels

%
 o

f T
im

e
 S

p
e

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13
0
2
4
6
8

10
12
14

Pokemon Go

DVFS Bandwidth Levels

%
 o

f T
im

e
 S

p
e

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13
0
2
4
6
8

10
12
14
16

Facebook

DVFS Bandwidth Levels

%
 o

f T
im

e
 S

p
e

n
t

1 2 3 4 5 6 7 8 9 10 11 12 13
0
2
4
6
8

10
12
14

Spotify

DVFS Bandwidth Levels

%
 o

f T
im

e
 S

p
e

n
t

Fig. 7. Percentage of total execution time spent on different memory
bandwidth levels (Table I) when using DG and the proposed approach. Note
that CS does not adjust memory bandwidth.

frequency for all the cores without considering the individual
core loads. This drawback was addressed in our approach,
resulting in an energy improvement of 24.5%, IPC hit of 0.2%,
and increased makespan of up to 1%. With respect to CS,
we see an improvement of 3.6%, 31.1% and 7.2% in IPC,
energy savings, and application makespan, respectively. The
improvement can be attributed to our holistic approach, which
varies both CPU frequency and memory bandwidth.

2) MobileBench: This application is a representative of ap-
plication with multiple phases. During a CPU-intensive phase,
our solution selects higher core frequencies, as shown in Fig-

TABLE IV
SUMMARY OF IPC HITS, ENERGY SAVINGS, AND MAKESPAN INCREASE

OF PROFILED APPLICATIONS USING PROPOSED APPROACH COMPARED TO
THE DEFAULT ANDROID GOVERNORS (DG) AND CRITICAL-SPEED BASED

DVFS TECHNIQUE (CS) [14]

Application
IPC

hits (%)
Energy

savings (%)
Makespan

increase (%)
DG CS DG CS DG CS

VidCon -0.2 +3.6 +24.5 +31.1 +0.5 -7.2
MobileBench -1.6 +0.3 +18.2 +11.6 +6.1 -1.0
Pokemon Go -0.9 +5.0 +19.1 +19.6 +1.4 -3.2

Facebook -1.1 +1.3 +7.0 +22.8 + 2.1 -8.5
Spotify -1.7 +2.2 +27.6 +29.1 +2.5 -9.2

ure 6. Core frequencies are reduced and memory bandwidth is
increased during memory-intensive phases (Figure 7), resulting
in an energy improvement of 18.2% with an IPC degradation
of 1.6% and an increased makespan of 6%. When compared
to CS, we observe an overall improvement of 0.3%, 11.6%
and 1% in IPC, energy savings and application makespan,
respectively. The result confirms that the application has more
CPU-intensive phases than memory-intensive phases, as this
allows CS to optimize the application’s critical speed.

3) Pokemon Go: Since this application is memory- and
GPU-intensive (with bursts of high CPU loads), an energy-
efficient solution can be obtained by reducing core frequencies
while increasing memory bandwidth, as shown in Figures 6
and 7. Our approach improves the energy consumption over
DG by 19.1% with an IPC degradation of 0.9% and an
increased makespan of up to 2%. The slight IPC degradation
was due in part by the sharp shifts to CPU-intensive phases,
which causes our controller to mis-predict, and, in part, by
GPU bottleneck. However, when compared to CS, we see an
overall improvement of 5%, 19.6% and 3.2% in IPC, energy
savings and application makespan, respectively.

4) Facebook: From Figure 6, our approach selects very
different core frequencies compared to DG, resulting in an
energy improvement of 7% and IPC degradation of 1.1%
with an increased makespan of 2%. Here, less energy can be
saved, as Facebook has multiple resource-intensive processes.
When compared to CS, we observe an overall improvement
of 1.3%, 22.8% and 8.5% in IPC, energy savings and ap-
plication makespan, respectively. Since Facebook has more
memory-intensive phases than CPU-intensive phases, CS fails
to optimize the application performance by just calculating the
critical speed.

5) Spotify: Our approach resulted in 27.6% energy im-
provements with an IPC hit of no more than 1.2% and
an increased makespan of up to 3%. Since this application
is fairly CPU intensive, core frequencies cannot be further
reduced in general (Figure 6). However Figure 7 shows that the
choice of memory bandwidth can be improved to attain both
performance and energy gains. In addition, we see an overall
improvement when compared to CS of 2.2%, 29.1% and 9.2%
in IPC, energy savings and application makespan, respectively.
This results highlights a drawback of CS, which adopts an
independent, module-based DVFS policy, even though the
critical DVFS speed is computed with an informed knowledge

TABLE V
SUMMARY OF IPC HITS, ENERGY SAVINGS, AND MAKESPAN INCREASE

OF APPLICATIONS WITHOUT OFFLINE PROFILES USING PROPOSED
APPROACH COMPARED TO THE DEFAULT ANDROID GOVERNORS (DG)

AND CRITICAL-SPEED BASED DVFS TECHNIQUE (CS) [14]

Application
IPC

hits (%)
Energy

savings (%)
Makespan

increase (%)
DG CS DG CS DG CS

Media Converter +0.8 +5.6 +18.7 +22.5 -8.2 -11.1
Android Browser -0.1 +2.1 +12.4 +13.4 +5.7 -6.0

Fruit Ninja -3.1 +2.3 -1.4 +15.8 +22.7 -0.7
Youtube -1.2 +3.0 +15.9 +12.3 +3.1 -2.9

Amazon Music -2.1 +4.3 +18.3 +20.7 +7.4 -6.8

of application’s memory access rate.

B. Application without Offline Profiles

To demonstrate the effectiveness of using existing profiles
on an application with no offline profile, we performed an
additional set of experiments. Here, we assume that the offline
profiles for VidCon, MobileBench, Pokemon Go, Facebook
and Spotify are readily available. Now, we present a set of
newly installed applications, namely, Media Converter, An-
droid Browser, Fruit Ninja, YouTube and Amazon Music, all
of which had not previously been profiled offline. Each of the
newly installed applications have a unique software signature.
That is, VidCon, MobileBench, Pokemon Go, Facebook, and
Spotify are expected to have similar resource usage patterns
as Media Converter, Android Browser, Fruit Ninja, YouTube
and Amazon Music, respectively. We tested our proposed
framework on the new applications using the offline profiles
of the existing applications. This idea can be extended to
group multiple applications of similar software signatures and
matching them to a generic set of unique offline profiles.

Again, we compared our approach against DG and CS, and
reported the average value of application performance and
energy consumption over 10 runs per application in Table V.
From our experiments, compared to the default governor, we
found that reusing the profiles of most of the applications
helps to save a significant amount of system wide-energy,
albeit with small hits in IPC (a little over 3%) and an average
increase in makespan of up to 9%. On the contrary, compared
to CS, we see an overall improvement in system-wide energy,
application IPC, and makespan. We now provide more details
on our findings by discussing selected applications (two with
the best performance and one with the worst performance) as
case studies, when compared with the default governor.

We start with Amazon Music and Media Converter which
have the best overall performance when using our proposed so-
lution. Amazon Music has an uneven CPU utilization with one
core ending up with very high utilization for a long period of
time while the other cores show marginal utilization, with short
bursts of high usage. Our solution utilizes the performance-
bandwidth offline profile of Spotify for use with Amazon
Music. The application reports an IPC degradation of as little
as 2% with a 18.3% system-wide energy improvement. On
the contrary, compared to CS, the application reports an IPC
and makespan improvement of 4.3% and 6.8% respectively,

with a 20.7% system-wide energy improvement. Both Spotify
and Amazon Music work under a similar client-server module,
which likely attributes to their similar CPU usage and memory
access pattern. Similarly, Media Converter, which utilizes the
offline profile of VidCon, reports an IPC degradation of as little
as 1% with a 18.7% energy improvement when compared to
DG. When compared to CS, we see an IPC and system wide
energy improvement of 5.6% and 22.5% respectively.

While our proposed approach always outperforms CS, Fruit
Ninja shows the worst performance when comparing the
default governors with our proposed solution. The primary
reason for such QoS degradation can be attributed to a very
low degree of shared libraries between the two gaming appli-
cations, the other one being Pokemon Go. That was evident
from the distinct difference in the memory access pattern of
the two applications under consideration. Hence, we observed
a negative QoS of 3% and a reduced energy consumption when
compared with the default governor’s performance. In such a
case, we can (i) increase the granularity of the offline profile
to improve the phase detection mechanism, or (ii) create an
additional LUT at runtime for future use.

To summarize, our approach is able to save a significant
amount of energy (up to 18.77%) for almost all the applica-
tions considered and which do not have offline profiles, albeit
with a hit in IPC of up to 3% and an average increase in
makespan of up to 9% when compared to DG. Against CS,
we see an overall improvement of 22.5%, 5.6% and 11.1% on
energy savings, application IPC, and makespan, respectively.
It is interesting to note that CS performs worse than both DG
and our approach. However, CS was validated against demo
benchmarks and not real-world applications.

C. Variable Usage Patterns

Most smartphone applications are reactive to user behaviors.
In order to validate the robustness of our approach, we exper-
imented on the effect of varying end users’ usage pattern on
application performance and energy savings. We run Amazon
Music (a representative of applications without offline profiles)
under two different scenarios: (i) 5 runs with Monkey [37] to
generate pseudo-random interactions with the application; and
(ii) 5 runs using an actual user to vary the usage pattern of the
application. We report our findings in Table VI. The results
indicate fairly negligible differences for the different metrics
between Monkey and an actual user. Since it is difficult to
precisely predict users behaviors and their specific interactions
with an application, we rely on the online controller to adapt
to dynamic changes. As future work, we plan on leveraging
our framework to incorporate online learning [38] to better

TABLE VI
IPC HITS, ENERGY SAVINGS, AND MAKESPAN INCREASE OF AMAZON

MUSIC WITH VARYING APPLICATION USAGE PATTERNS

Application
IPC

hits (%)
Energy

savings (%)
Makespan

increase (%)
Monkey User Monkey User Monkey User

Amazon Music -2.1 -2.5 +18.3 +15.6 +7.4 +7.6

TABLE VII
SUMMARY OF IPC HITS, ENERGY SAVINGS, MAKESPAN INCREASE, AND

OVERHEAD OF SPOTIFY USING PROPOSED APPROACH COMPARED TO
DEFAULT GOVERNOR WITH VARYING CONTROLLER PERIODS

Period IPC Energy Makespan Overhead
(in s) hits (%) savings (%) increase (%)

1 -1.7 +27.6 +2.5 4%
2 -1.5 +22.8 +2.4 4%
3 -1.5 +21.5 +2.4 6%
4 -2.9 +9.6 + 8.0 6%
5 -7.2 +5.0 +11.4 7%

predict resource usage patterns over time. Work on hardware-
software co-design for application load monitoring [39] can
also be applied to our framework.

D. Overhead

The overhead of our approach depends on the period of
the controller (Section VI). In this work, said period is set to
1 s, which is a safe lower bound on the controller period, as
changing CPU frequency and memory bandwidth takes time
on the actual hardware. Combining with online monitoring
(less than 10 ms), LUT search (about 7 ms on average), and
actually setting new core frequencies and memory bandwidth
through sysfs node writes, the total overhead of a single
period is no more than 25 ms, which is a little over 4% of the
period of the controller. This makes the computation overhead
of our approach fairly negligible.

To experimentally assess the overhead of our approach, we
select two applications, Spotify (a representative of applica-
tions with offline profiles) and Amazon Music (a representative
of applications without offline profiles), and compare the
performance metrics and energy savings of the applications
as functions of the controller period, as shown in Tables VII
and VIII, respectively. We also report the computation over-
head herewith. We see a greater degradation in IPC, energy
saving and makespan with an increase in controller period
over 3 s. This is attributed to our design decision; we collect
the CPU related PMU data in hash tables inside the kernel.
Similarly, the PMU data recorded for cache traffic resides in
a loadable kernel module. Both the data structures are limited
by their size and structural integrity. Increasing the controller
period beyond 3 s leads to data overflow on the aggregate
buffer. A workaround was to truncate the data bits to the
first five significant digits, which introduces enough errors and
results in fairly poor system configuration decision making. A
non-linear growth in computational overhead as a function of
the controller period can be attributed to a higher accumulation
of online data, which needs to be processed and sorted through.
Note, however, that detecting an application’s phase change
and determining the appropriate energy-efficient configuration
take constant time irrespective of the controller period.

X. CONCLUSIONS

In this article, we presented an integrated system-level
energy management approach that uses a software support

TABLE VIII
SUMMARY OF IPC HITS, ENERGY SAVINGS, MAKESPAN INCREASE, AND
OVERHEAD OF AMAZON MUSIC USING PROPOSED APPROACH COMPARED

TO DEFAULT GOVERNOR WITH VARYING CONTROLLER PERIODS

Period IPC Energy Makespan Overhead
(in s) hits (%) savings (%) increase (%)

1 -2.1 +18.3 +7.4 4%
2 -2.3 +14.7 +7.9 5%
3 -4.1 +11.0 +9.4 5%
4 -6.8 +5.2 +12.2 5%
5 -9.7 +5.0 +17.5 6%

framework to obtain application-specific performance, mem-
ory, and energy data and find the most energy-efficient CPU
frequencies and memory bandwidth without sacrificing QoS.
In addition, our approach detects instantaneous phase changes
of applications to further save energy and can be used to
minimize the energy consumption of new applications. Experi-
ments on a Nexus 6 smartphone revealed that our approach can
help save significant system-wide energy with negligible loss
in QoS. In the future, we plan on extending our framework to
consider multiple applications that are simultaneously running
on the same processor core and optimizing energy usage of
peripherals.

REFERENCES

[1] Android Developers. Android 8.0 Behavior Changes. (2018). [Online].
Available: https://developer.android.com/about/versions/oreo/android-
8.0-changes.html

[2] ——. Background Location Limits. (2018). [Online]. Avail-
able: https://developer.android.com/about/versions/oreo/background-
location-limits.html

[3] R. Begum, D. Werner, M. Hempstead, G. Prasad, and G. Challen,
“Energy-performance trade-offs on energy-constrained devices with
multi-component DVFS,” in International Symposium on Workload
Characterization (IISWC), 2015, pp. 34–43.

[4] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, “Chal-
lenges in the development of advanced Li-ion batteries: a review,”
Energy & Environmental Science, vol. 4, no. 9, pp. 3243–3262, 2011.

[5] M. A. Rumi, D. H. Hasan et al., “CPU power consumption reduction in
android smartphone,” in International conference on Green Energy and
Technology (ICGET),, 2015, pp. 1–6.

[6] S. He, Y. Liu, and H. Zhou, “Optimizing smartphone power consumption
through dynamic resolution scaling,” in Proceedings of the Annual
International Conference on Mobile Computing and Networking, 2015,
pp. 27–39.

[7] P. T. Bezerra, L. A. Araujo, G. B. Ribeiro, A. C. d. S. B. Neto, A. G.
Silva-Filho, C. A. Siebra, F. QB da Silva, A. L. Santos, A. Mascaro,
and P. H. Costa, “Dynamic frequency scaling on android platforms for
energy consumption reduction,” in Proceedings of the ACM workshop
on Performance monitoring and measurement of heterogeneous wireless
and wired networks, 2013, pp. 189–196.

[8] A. C. de Melo, “The new linux ‘perf’ tools,” in Slides from Linux
Kongress, vol. 18, 2010.

[9] A. W. Min, R. Wang, J. Tsai, and T.-Y. C. Tai, “Joint optimization
of DVFS and low-power sleep-state selection for mobile platforms,” in
International conference on Communications (ICC), 2014, pp. 3541–
3546.

[10] O. Sahin and A. K. Coskun, “Qscale: Thermally-efficient QoS manage-
ment on heterogeneous mobile platforms,” in International Conference
on Computer-Aided Design (ICCAD), 2016, pp. 1–8.

[11] X. Li and J. P. Gallagher, “An energy-aware programming approach
for mobile application development guided by a fine-grained energy
model,” CoRR, vol. abs/1605.05234, 2016. [Online]. Available:
http://arxiv.org/abs/1605.05234

[12] K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and Y. Handong,
“Application-specific performance-aware energy optimization on android
mobile devices,” in International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 169–180.

[13] D. Shingari, A. Arunkumar, and C.-J. Wu, “Characterization and
throttling-based mitigation of memory interference for heterogeneous
smartphones,” in International Symposium on Workload Characteriza-
tion (IISWC), 2015, pp. 22–33.

[14] W.-Y. Liang and P.-T. Lai, “Design and implementation of a critical
speed-based DVFS mechanism for the android operating system,” in
International Conference on Embedded and Multimedia Computing
(EMC), 2010, pp. 1–6.

[15] Android Developers. (2013) Android SDK. [Online]. Available:
http://developer.android.com/sdk/ndk/index, html

[16] N. Chaudhary, T. Pallavi et al., “Bus bandwidth monitoring, prediction
and control,” in International conference on Advances in Computing,
Communications and Informatics (ICACCI), 2015, pp. 1152–1158.

[17] A. Carroll and G. Heiser, “Unifying DVFS and offlining in mobile
multicores,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014, pp. 287–296.

[18] Y. G. Kim, M. Kim, and S. W. Chung, “Enhancing energy efficiency of
multimedia applications in heterogeneous mobile multi-core processors,”
IEEE Transactions on Computers, vol. 66, no. 11, pp. 1878–1889, 2017.

[19] X. Chen, J. Mao, J. Gao, K. W. Nixon, and Y. Chen, “MORPh:
mobile OLED-friendly recording and playback system for low power
video streaming,” in Proceedings of the Annual Design Automation
Conference, 2016, p. 153.

[20] M. H. Memon, M. Hunain, A. Khan, R. A. Shaikh, and I. Khan, “Power
management for android platform by set CPU,” in International confer-
ence on Computing for Sustainable Global Development (INDIACom),
2016, pp. 3953–3958.

[21] V. Spiliopoulos, A. Bagdia, A. Hansson, P. Aldworth, and S. Kaxiras,
“Introducing DVFS-management in a full-system simulator,” in Inter-
national Symposium on, Modeling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS), 2013, pp. 535–545.

[22] F. Ghanei, P. Tipnis, K. Marcus, K. Dantu, S. Ko, and L. Ziarek, “Os-
based resource accounting for asynchronous resource use in mobile
systems,” in Proceedings of the International Symposium on Low Power
Electronics and Design, 2016, pp. 296–301.

[23] X. Chen, C. Xu, and R. P. Dick, “Memory access aware on-line voltage
control for performance and energy optimization,” in Proceedings of the
International Conference on Computer-Aided Design, 2010, pp. 365–
372.

[24] C. Imes, D. H. Kim, M. Maggio, and H. Hoffmann, “Poet: A portable
approach to minimizing energy under soft real-time constraints,” in Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2015, pp. 75–86.

[25] E. Ahmad and B. Shihada, “Green smartphone GPUs: Optimizing
energy consumption using GPUFreq scaling governors,” in International
conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), 2015, pp. 740–747.

[26] J.-G. Park, C.-Y. Hsieh, N. Dutt, and S.-S. Lim, “Quality-aware mobile
graphics workload characterization for energy-efficient DVFS design,”
in Symposium on Embedded Systems for Real-time Multimedia (ESTI-
Media), 2014, pp. 70–79.

[27] A. Prakash, H. Amrouch, M. Shafique, T. Mitra, and J. Henkel, “Improv-
ing mobile gaming performance through cooperative CPU-GPU thermal
management,” in Design Automation Conference (DAC), 2016, pp. 1–6.

[28] J. Kong and K. Lee, “A DVFS-aware cache bypassing technique for
multiple clock domain mobile socs,” IEICE Electronics Express, vol. 14,
no. 11, pp. 20 170 324–20 170 324, 2017.

[29] P. S. Patil, J. Doshi, and D. Ambawade, “Reducing power consumption
of smart device by proper management of wakelocks,” in International,
Advance Computing Conference (IACC), 2015, pp. 883–887.

[30] B. K. Reddy, A. K. Singh, D. Biswas, G. V. Merrett, and B. M. Al-
Hashimi, “Inter-cluster thread-to-core mapping and DVFS on hetero-
geneous multi-cores,” IEEE Transactions on Multi-Scale Computing
Systems, no. 1, pp. 1–1, 2017.

[31] P.-H. Tseng, P.-C. Hsiu, C.-C. Pan, and T.-W. Kuo, “User-centric
energy-efficient scheduling on multi-core mobile devices,” in Design
Automation Conference (DAC), 2014, pp. 1–6.

[32] W. Jung, K. Kim, and H. Cha, “Userscope: A fine-grained framework
for collecting energy-related smartphone user contexts,” in International
Conference on Parallel and Distributed Systems (ICPADS), 2013, pp.
158–165.

[33] P. Mercati, F. Paterna, A. Bartolini, L. Benini, and T. Rosing, “WARM:
Workload-aware reliability management in linux/android,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 36, no. 9, pp. 1557–1570, 2016.

[34] H. Yang and S. Ha, “Power optimization of multimode mobile embedded
systems with workload-delay dependency,” Mobile Information Systems,
vol. 2016, 2016.

[35] Y. Huang, Z. Zha, M. Chen, and L. Zhang, “Moby: A mobile benchmark
suite for architectural simulators,” in International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), 2014, pp. 45–54.

[36] X. Dong, S. Dwarkadas, and A. L. Cox, “Characterization of shared
library access patterns of android applications,” in International Sympo-
sium on Workload Characterization (IISWC), 2015, pp. 112–113.

[37] Android Developers. Monkey Command-Line Emulator. (2018).
[Online]. Available: https://developer.android.com/studio/test/monkey

[38] L.-T. Duan, M. Lawo, I. Rügge, and X. Yu, “Power management of
smartphones based on device usage patterns,” in Dynamics in Logistics.
Springer, 2017, pp. 197–207.

[39] I. Abubakar, S. Khalid, M. Mustafa, H. Shareef, and M. Mustapha,
“Application of load monitoring in appliances energy management–a
review,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 235–
245, 2017.

Anway Mukherjee (S’18) received his B.S. degree
in electronics and communications from West Ben-
gal University of Technology, India, in 2011. He is
currently working towards his Ph.D. degree at the
Department of Electrical and Computer Engineering,
Virginia Tech, VA, USA. His research focuses on
energy-aware and resource-aware hardware-software
co-design of real-time embedded systems.

Thidapat Chantem (S’05-M’11-SM’18) received
her Ph.D. and Master’s degrees from the Univer-
sity of Notre Dame in 2011 and her Bachelor’s
degrees from Iowa State University in 2005. She is
an Assistant Professor in Electrical and Computer
Engineering at Virginia Tech. Her research inter-
ests include real-time embedded systems, energy-
aware and thermal-aware system-level design, cyber-
physical system design, and intelligent transportation
systems.

