
An Integrated Energy Management Framework for
Multiple Side-by-Side Applications on Smartphones

Anway Mukherjee and Thidapat Chantem
Department of Electrical and Computer Engineering, Virginia Tech, USA. Email: {anwaym, tchantem}@vt.edu

Abstract—While simultaneous side-by-side execution of multi-
ple applications in split-screen mode on smartphones improves
quality-of-service (QoS) for end-users, it also results in increased
power consumption and reduced battery lifetime. Saving en-
ergy when multiple concurrent applications run side-by-side is
extremely challenging since applications often utilize the same
shared system resources, e.g., memory, at the same time, and re-
source needs change over time. We present an application-aware
integrated system-level energy management framework that (1)
leverages applications’ offline profiles to detect dynamic changes
in resource usage patterns of the workload of applications, and
(2) opportunistically throttle (and later redeem) applications
based on their instantaneous resource usage characteristics by
dynamically adjusting both the voltage and frequency settings of
the processor and memory bandwidth at runtime to achieve the
most energy-efficient configuration subject to QoS constraints.
Experiments on a Pixel 2 smartphone show that our approach
achieves an average energy reduction of 13% (16%) and up to
16% (20%) compared to the most closely related work [1] (and
default Android governor) for different combinations of real-
world applications running side-by-side in split-screen mode. Our
approach is also able to reduce the energy consumption of newly
installed real-world applications for which there exists no prior
resource usage data by up to 12% (14%) when compared to [1]
(and default Android governor).

I. INTRODUCTION

Modern smartphones now increasingly support more fea-
tures and functionality, which lead to improved application
performance and quality-of-service (QoS). A fairly new smart-
phone feature, thanks to larger dynamic random-access mem-
ory (DRAM), is that several applications can share the device
screen simultaneously. That is, a user could split the screen,
composing a document on one side while viewing a video on
the other side. However, currently available battery technology
in smartphones cannot adequately support such technological
advances, resulting in poor battery life in smartphone [2], or
even worse, device overheating [3], [4].

Existing energy saving solutions for smartphones often
focus on enabling independent fine-grained dynamic voltage
and frequency scaling (DVFS)-based power management of
distributed components or subsystems at different layers of
abstraction [5], [6]. However, minimizing the power consump-
tion of each component independently does not always result
in an optimized solution. For instance, the overall system load
is often used to adjust core voltage and frequency settings to
optimize application QoS. Such a technique ignores memory
usage, which has been shown to be application-specific [7]

This work was supported in part by the National Science Foundation under
grant numbers CNS-1618979.

and which cannot be easily captured by monitoring system
load alone.

While DVFS can significantly reduce energy consumption,
the time overhead associated with dynamic voltage and fre-
quency (VF) scaling is not insignificant and often adversely
affects the overall performance of the system [8]. DFVS
can also lead to more energy dissipation since each VF
level switching incurs additional power state transitions at
the device hardware-level. Existing work on DVFS policies
either assumes no latency in VF scaling [1], [9], or inter-
sperses such VF transitions without prior knowledge of the
workload requirements [10]. An effective system-level energy
management solution, therefore, must judiciously make use
of power saving opportunities, by considering the varying
resource usage pattern of an application over time. However, a
major challenge is to detect and classify the dynamic resource
usage pattern of individual applications within an execution
context where multiple concurrent applications run side-by-
side on the same shared system resources.

In this paper, unlike many previous works, e.g., [11] which
limit the energy saving technique to processor cores only, we
propose a coordinated energy management solution that aims
to reduce the energy consumption of side-by-side applications
on smartphones. We leverage an offline profiling tool [1]
to detect and classify application workloads based on their
dynamic resource usage patterns. We then present a technique
to group applications with similar resource usage patterns,
which can greatly improve the execution predictability, while
reducing the runtime overhead of the energy management so-
lution, as reported later in this work. In contrast, for concurrent
applications running side-by-side with different resource usage
patterns, we present a dynamic policy that can judiciously
throttle (and later redeem) such applications to achieve sig-
nificant power saving opportunities without incurring runtime
overhead or sacrificing QoS.

The most closely related work to our proposed dynamic
energy management framework is presented in [1]. Said work
implemented an integrated system-level DVFS technique that
detects instantaneous phase changes of the target application,
and uses that information to find the most energy-efficient
CPU frequencies and memory bandwidth without sacrific-
ing QoS. While the approach aims to reduce the energy
consumption of side-by-side applications on smartphones, it
makes several restrictive assumptions. Firstly, it states that
each application running side-by-side must utilize separate
cores. Secondly, the work simulated system noise, and spatial
and temporal contention of shared resources, by running a
fixed lightweight application side-by-side with a real-world
application, as opposed to capturing the actual interference978-1-5386-5541-2/18/$31.00 ©2020 IEEE

due to synchronous execution of multiple side-by-side real-
world applications. Finally, it fails to dynamically detect
phase changes of the overall system workload when multiple
applications are running concurrently on the same processor
core. We address these limitations in our proposed DVFS-
based energy management framework by

1) Leveraging a lightweight phase detection tool [1] to record
the instantaneous phase changes of concurrent applications,
running side-by-side, and categorize application workloads
based on their dynamic phase changes. Our approach also
assists in the energy management of newly installed appli-
cations for which no prior resource usage data exists.

2) We group applications with similar resource usage patterns,
and leverage an online controller [1] at runtime to select the
most energy-efficient configuration of the system without
sacrificing performance. For applications with different re-
source usage patterns, we propose a novel runtime overhead-
aware energy saving policy which judiciously throttles the
application performance, and later opportunistically com-
pensates for the performance loss, to save system-wide
energy consumption without sacrificing QoS.

3) We validate our proposed approach and assess its per-
formance by comparing it with the most closely related
work [1], as well as the default Android governor, in a
multi-process environment by running typical real-world
applications side-by-side in split-screen mode on our target
smartphone, Pixel 2, running Android Oreo. Experimental
results show that our approach is able to achieve an im-
provement of up to 16% in energy savings over the most
closely related work [1].

II. PRELIMINARIES

A. Platform

We chose Android OS [12] in this work since it is the most
widely used open-source mobile OS. Android implements an
abstraction of device-level DVFS framework, called the An-
droid governors, to reactively manage the energy consumption
of the device. The Pixel 2’s governors can choose from a
list of 14 CPU frequencies a processing core can operate at
(for e.g., 0.3000, 0.4224, 0.6528, 0.7296, . . ., 2.5728, 2.6496
in GHz). Similarly, a governor, known as devfreq, which
manages memory bandwidth, has 13 levels to choose from (for
e.g., 762, 1144, 1525, 2288, . . ., 12145, 16250 in MBps). A
system configuration is defined as any combination of the tuple
(CPU Frequency, Memory Bandwidth) from the corresponding
available choices of frequencies as shown in Table I.

B. Characterizing an Android Application

Android applications are governed by their activity list. An
activity is the subroutine with an application that contains a
list of tasks to be performed whenever the activity is invoked.
An activity can be invoked through a trigger when the user
interacts with the application. A typical lifecycle of an activity
spans over three parts; (1) an actual trigger to start the activity,
followed by (2) a set of functions performed in the background
to set up the activity context, and finally (3) the activity
context being rendered onto the screen. For instance, launching

an application by tapping the application button triggers the
launch-related activity that ultimately renders the application
on the smartphone screen. All application-related activity is
defined in its AndroidManifest.xml file. An activity,
and its set of events, can be coarsely classified as either
computation intensive or memory intensive. For instance, an
activity triggered by tapping on the screen results in a series
of events that contribute to the creation or deletion of multiple
new execution contexts. Such events contribute to computation
intensive operations [13]. Similarly, an application window
resizing activity may result in memory intensive (or less
computation intensive) events, partially due to related data
reloading and image rendering tasks offloaded to a dedicated
co-processor.

Previously, an application in Android was categorized as
either being in the foreground context (i.e., an application
currently visible on screen), or in the background context (i.e.,
an application with limited functionality). With split-screen
mode of side-by-side execution, however, multiple concurrent
applications can demand access to the available system re-
sources at the same time, and run at peak functionality. This
leads to an increased energy consumption, and poor battery
life in smartphones [3].

III. PROPOSED FRAMEWORK

There are multiple challenges associated with the imple-
mentation of an integrated energy management framework on
Androids with split-screen mode of execution. For instance,
existing work [1], [7], [11] fail to detect, segregate, and
subsequently predict the dynamic resource usage pattern of
individual applications within an execution context. A segre-
gation of resource needs would help to isolate the resource
utilization of each application from the overall resource usage
among concurrent side-by-side applications while running on
shared system resources. Only with such knowledge can we
effectively reduce the energy consumption of all concurrent
side-by-side applications without incurring any unnecessary
overhead that can unfairly impact QoS.

In this work, we overcome the aforementioned challenge
by proposing (1) a technique to categorize application activ-
ity contexts (defined in Section II-B) based on its dynamic
resource usage pattern, and (2) a novel DVFS-based throttle-
and-redeem policy for concurrent side-by-side applications to
be run within an integrated energy management framework
for minimum system-wide energy consumption with negligible
effect on QoS. An overview of our proposed framework is
shown in Figure 1.

We split our work into a two-step procedure; an offline
profiling step followed by online execution. Firstly, we lever-
age the technique shown in [1] to run our target application
(say τa) through an offline power-performance profiling step
(Section IV). However, instead of simulating system noise
through a lightweight application, we run τa side-by-side
with another real-world application (say τb) to capture the
expected variable system loads, and contention on shared
resources due to concurrent side-by-side execution during
actual runtime. While our approach can readily be extended to

Application
#1

Application
#2

Application Tuple

Side-by-Side Profiling

Offline Profiler
(Section IV)

Look Up Table (LUT)

Config QoS Power

#1
#2
#3

X
X
X

X
X
X

Per Application LUT

Activity Classification Table

App Activity Category

#1
#2
#3

X
X
X

X
X
X

L1 $ Monitor
(Section IV)

L2 $ Monitor
(Section IV)

Constructing
Compatible Tuples

(Section V-A)

Controller
(Section V-C)

Throttle-Redeem
Token Manager

(Section V-B)

(Section IV-A)

#1

Per Core Freq

#4

#2

#3

Memory
Bandwidth

Selected Config

Step I (Offline) Step III (Online)

Phase Detector
(Section IV)

Application
#1

Application
#2

Runtime Application Tuple

Side-by-Side Execution

User Preferred
Application Tuples

Selected Application Activity

Activity
Classification

Table

LUT

Chosen
Tuple

Fig. 1. The proposed framework is decoupled into (1) running applications
side-by-side for offline profiling (Step I), (2) analyzing application-specific
activity’s resource usage pattern (Step II), and (3) an online framework to
select the best energy-performance configuration (Step III).

multiple applications on split-screen, we restrict the number
of applications sharing the split-screen to two in this work.
This is due to the limitation of our hardware testbed’s RAM
capacity since all processes sharing the device screen run with
equal activity context, resulting in the split-screen mode of
execution using extremely high memory in order to keep all the
application contexts alive. We also catalog said offline profile
data into categories of applications for the runtime energy
management of applications which do not have offline profile
data (Section VII-B). Note, that we assign each application
to separate core(s) to help isolate the resource usage (CPU
load and memory traffic) of our target application (τa) when
running simultaneously with another real-world application
(τb) in split-screen mode during offline analysis.

Second, we propose a technique to categorize application
activity contexts into either computation intensive contexts or
memory intensive contexts (defined later in Section IV-A).
This is accomplished by running the same application tuple
(τa , τb) through an offline phase analysis tool (Section IV-A)
similar to the technique shown in [1]. Said tool captures, over
time, the application-specific offline memory traffic for each
target application τa in the application tuple (τa , τb). Third,
we propose an online token-based throttle-and-redeem DVFS
policy at runtime where we opportunistically throttle the VF
levels of an application’s activity (acknowledged by issuing
a token) during side-by-side execution, and compensate the
throttled application by redeeming said token at a later time
to ensure fairness. We also use a runtime controller framework
(Section V-C), which relies on a throttle-redeem token man-
ager (Section V), along with the offline profiles (Section IV-
IV-A), to periodically select the voltage and frequency levels
of associated cores and memory subsystem that minimizes the
energy consumption without sacrificing target QoS.

IV. OFFLINE PROFILING AND ANALYSIS

In the first step, we leverage an offline power-performance
profiler presented in [1] to construct a lookup table (LUT),
an example of which is shown in Table I, to record the cor-
relation between a given system configuration, performance,
and power consumption for the target application (τa) in an
application tuple (τa, τb) competing for resource demands by

TABLE I
AN EXAMPLE LUT FOR TARGET APPLICATION (τa) IN THE APPLICATION

TUPLE (τa, τb) RUNNING ON PIXEL 2

Config CPU Freq Mem Bandwidth Normalized Power
(GHz) (MBps) IPC (mW)

1 0.3000 762 1 2258.9
2 0.6528 1525 1.3 2133.1
3 0.7296 2288 1.5 2375.0

concurrently running side-by-side. Note, that we limit the con-
current execution of application tuples (τa , τb) by assigning
each application to separate core(s) for the ease of offline
profiling and phase analyses [1]. Also, a combination tuple
(CPU Frequency, Memory Bandwidth) constitutes a system
configuration [1]. The normalized instructions per cycle (IPC)
is given by [1],

ĨPCi =
IPCi

IPC1
, (1)

where IPC1 , is the system configuration with the lowest
CPU frequency and memory bandwidth, and IPCi is the
average IPC of the ith system configuration.

In conjunction, we use a lightweight cache monitor and
phase detector tool from [1], that runs simultaneously with
the power-performance profiler, to monitor the memory traffic
for a target application (τa) when executing side-by-side with
another concurrent application (τb). This helps us predict a
target application’s resource usage patterns. We categorize a
memory intensive phase of the application if Uj

S ≤ 1, or a
computation intensive phase when Uj

S > 1 such that [1],

Uj = S × IPCi(
out L1 traffic
out L2 traffic

) , (2)

where S is the sensitivity level of the target application,
and defined as the minimum change in cache traffic that
would cause any change in the memory bandwidth under the
default Android governor [1]. Similarly, out L1 traffic and
out L2 traffic are the dynamic L1 and LLC memory traffic
data for the target application respectively. Next, we leverage
the phase prediction tool to propose a technique to categorize
our target application based on its instantaneous phase change
pattern.

A. Classifying Activity Contexts

An Android application is divided into a series of activity
contexts (Section II-B). A typical application-specific activity
list consists of separate subroutine(s) to react to different
user interactions. Therefore, we propose an offline analysis
technique whereby the different phase changes during each
activity context can be used to ascertain the resource usage
pattern of said activity, and in turn the overall application.
For a given target application, (1) we determine the start and
finish times of each activity context, during which (2) we
predict and record the number of phase changes, and finally
(3) categorize each activity to be in computation intensive or
a memory intensive execution context based on its resource
usage data. We classify an application activity to be compu-
tation intensive if the total number of detected computation

TABLE II
APPLICATION-SPECIFIC ACTIVITY CLASSIFICATION TABLE

FOR A LIST OF REAL-WORLD APPLICATIONS

Target App Activity List Category

Facebook

Touch Launcher
Touch Back
Touch Down
Touch Video
Touch Resize

. . .

Computation Intensive
Computation Intensive
Computation Intensive

Memory Intensive
Memory Intensive

. . .

MobileBench

Touch Down
Touch Move
Touch Back

Touch Resize
. . .

Computation Intensive
Computation Intensive
Computation Intensive

Memory Intensive
. . .

intensive phases are more than the total number of detected
memory intensive phases within the period of execution for
said activity. Similarly, for memory intensive activity, the total
number of detected memory intensive phases is more than the
total number of detected computation intensive phases during
the activity context. Such activity-specific classifications are
stored in the form of a table where each entry contains the
following parameters: Target App, Activity List, and Category.
Table II shows an example activity classification table (ACT)
for a list of real-world applications.

In our example ACT (Table II), the Facebook appli-
cation shows two computation intensive activities, namely,
Touch Launcher (i.e., app launch context) and Touch Down
(i.e., scroll down context), while the other two activities,
Touch Video (i.e., launch video context) and Touch Resize
(i.e., resize window context) are classified as memory intensive
execution contexts. Similarly, another example application,
MobileBench, contains three computation intensive activities,
and one memory intensive activity. When an application tuple
runs for the first time, we construct the activity classification
profile for a target application, and store it for future runs. The
data collected in this step later helps in the runtime controller
framework for online energy management.

While our offline power-performance LUTs (Section IV),
and application-specific ACTs may incur a storage cost as
low as 5 KB, the overall offline data set may exponentially
increase with scaling number of installed applications in
resource constrained smartphones. We address this challenge
by maintaining a catalogue of offline profiles, each broadly
classified as either computation intensive or memory intensive
on the basis of their resource usage pattern. Any newly in-
stalled application, that shares similar resource usage patterns
can reuse these profiles (see next section for more details).
Selecting which profile to use is performed using a nearest
neighbor (NN)-classification algorithm [14].

V. ONLINE ENERGY MANAGEMENT

Our objective is to design a dynamic voltage and frequency
scaling (DVFS) policy that can achieve system-wide energy
reduction while maintaining the desired QoS. Heretofore, we
have limited the concurrent execution of application tuples
(τa , τb) by assigning each application to separate core(s) for
the ease of offline profiling and phase analyses. However, in
reality, two or more applications may need to share a core
when the total number of active applications is large, and often

lead to resource contention due to concurrent accesses to the
other shared resources. Another key challenge is to manage the
runtime overhead associated with each change in voltage and
frequency levels. This is because the prescribed modification
to the system configuration due to such a change at the
hardware level incurs a significant overhead (up to 13 ms for
our testbed). For instance, an aggressive energy saving policy
would not only fail to achieve expected performance efficiency,
but also, at worst, lead to more energy dissipation [15].

We, therefore, propose an online DVFS-based energy man-
agement solution that (1) utilizes the offline classification
of application-specific activity contexts (Table II) to group
side-by-side applications with similar resource usage pat-
terns into compatible application tuple(s) (Section V-A),
(2) uses a token-based dynamic energy management policy
that judiciously throttles application performance (and later
compensates for the performance loss) during the side-by-
side execution of applications that do not have compatible
resource usage patterns (Section V-B), and finally (3) design
a controller framework to determine the voltage frequency
level(s) that optimizes for both power reduction and QoS
requirements (Section V-C).

A. Constructing Compatible Application Tuples

The motivation behind our approach is based on the ob-
servation that multiple activities of different applications not
only share the same set of events but also show similar
resource usage patterns. For instance, in our example activity
classification table (Table II), the two applications Facebook
and MobileBench have similar activities, i.e., Touch Down,
Touch Back etc., with compatible computation intensive phase
patterns. Grouping applications with similar phase patterns
maximizes the duration of usage of shared resource (e.g.,
running on the same core) under similar system configurations.
This has a two-fold advantage. Firstly, running application
processes which are in-phase present a highly predictable
and almost constant system load, thereby allowing shared
resources (processor cores, peripherals) to remain in the same
system configuration (CPU frequency, memory bandwidth) for
longer duration(s). Secondly, reducing the frequent changes in
system configuration leads to reduced runtime overhead, along
with improved system-wide power consumption.

We implement a learning-based classification approach,
called the nearest neighbor (NN) algorithm [14], for construct-
ing the best application tuples (τa , τb) from a list of real-
world applications. For each candidate application (say τa),
we use its activity classification table data collected offline
(Section IV-A) to choose its nearest neighbor application (say
τb) from the training data set. There are multiple advantages of
using the NN-based classifier in our work. The NN-algorithm
is highly flexible, i.e., new data entry can be classified and
adapted in real-time into the training data set within a single
run. Furthermore, it is resistant to noisy training data [14].
However, NN-algorithm is inherently slow and does not scale
well with increasing size of training data set. We overcome
these challenges by (1) bounding the size of the training set
by limiting activity-specific offline profile data (Section IV-A)

and, (2) storing the data points in two-dimensional tree for
faster computation. For an application τa with offline profiles,
we use its activity classification table entry as input to the
NN-classifier to find another application τb with activities that
are compatible to phase change patterns of τa . The tuple thus
constructed forms a resource-aware application tuple (τa , τb)
for side-by-side execution. Applications which do not have an
offline profile can be classified and included in the training
data set with minimum overhead in real-time (Section VII-B).

B. Token-Based Throttle-Redeem Policy

The user can choose any combination of concurrent appli-
cations to run side-by-side. In reality, such an application tuple
may not be classified as a compatible application tuple. These
applications, containing highly dissimilar resource usage pat-
terns (including pareto-optimal cases), when run concurrently
on the same core may result in frequent activity-specific phase
changes. Therefore, they too need to be judiciously managed
so that the voltage frequency scaling results in an optimal
trade-off between the system-wide energy reduction and main-
taining the target QoS. We propose a runtime overhead-aware
token-based DVFS policy, which avoids unnecessary voltage
frequency level transitions while reacting to frequent changes
in activity contexts.

Throttling technique: Each application tuple (τa , τb) must
contain a throttled application τa , and a normal application
τb . The selection is based on our observation (during offline
profiling) that certain applications present a higher probability
of energy saving with negligible effect on its target QoS. A
normal application is targeted for optimum energy reduction,
while a throttled application is opportunistically assigned
lower than the desired VF levels during their activity runtime.
This may have an unfair effect on their desired QoS. For
instance, a throttled application in computation intensive (or
memory intensive) activity/phase may be assigned a lower
than desired CPU frequency (or memory bandwidth) directly
resulting in runtime overhead and performance degradation.
However, at a later point in execution, the throttled application
gets to redeem such unfair treatment by being allotted extra
CPU cycles and/or memory bandwidth to compensate for lost
performance, thus eventually obtaining the desired QoS.

Candidate for throttling: Our proposed solution operates
in the granularity of application-specific activity list. Each
activity can be classified as computation intensive (or memory
intensive) based on the majority of computation intensive
(or memory intensive) phases that are registered during the
execution context of an activity (Section IV-A). Therefore,
the majority of phases within an activity context can range
anywhere between 50% to 100%. The choice of application
to be throttled is based on the percentage of phases that
constitute the majority within the activity context. For instance,
an application (τa) with a computation intensive activity where
60% of its phases are computation intensive (and the rest being
memory intensive) will be chosen as a candidate for throttling
over an application (τb) with a memory intensive activity
where 90% of its phases are memory intensive. The throttled
application experiences reduced CPU frequency and higher

memory bandwidth. However, the unfair CPU throttling, in
this scenario, only affects τa ’s 60% of the phases (computation
intensive) while the rest 40% of the phases, which are memory
intensive, will benefit from the throttling. Such an informed
mis-prediction limits the performance loss for a throttled
application.

Compensation technique: The decision to redeem a token
is dependent on multiple factors. First, a throttled application
can opportunistically redeem its token(s) when current core-
specific system configuration matches with the resource us-
age pattern requirements of an activity ready for execution.
This allows the DVFS controller to estimate a new system
configuration to compensate for the lost performance. For
instance, let us consider that the core is currently set for
computation intensive execution (i.e., high CPU and low
memory bandwidth frequency), and the activity to be run
is also computation intensive. In such a case, the controller
can decide to estimate a new system configuration that can
select a higher CPU frequency (through redeemQoS) to save
computation time and thus, improve the QoS. Second, the
number of tokens per-application is limited by the number of
available tokens for distribution. The maximum tokens that can
be generated by the token manager can be pre-determined by
the system administrator. This limits the amount of throttling
that can be unfairly imposed on an application with negligible
QoS degradation.

The overview of our proposed solution is described in
Algorithm 1. We start with an application tuple (τa , τb), with
dissimilar resource usage patterns, chosen for concurrent side-
by-side execution. First, we select an application (say τa) for
throttling, detect its activity ready for execution (Lines 26 −
29), and obtain the information about its resource usage pattern
from the activity classification table (Table II). Second, we
use this information as input to a DVFS controller framework
(described later in Section V-C) whose job is to judiciously
select the best system configuration (CPU frequency, memory
bandwidth) to minimize the system-wide energy consumption
with negligible effect on application QoS (Lines 2−17). Once
the selected activity is assigned a core, we obtain the current
system configuration of the core, a necessary requirement for
an informed runtime overhead-aware DVFS policy (Line 5).
For instance, let us consider that the core is currently set for
memory intensive execution (i.e., low CPU and high memory
bandwidth frequency). However, the activity to be run is com-
putation intensive, i.e., it requires high CPU and low memory
bandwidth frequency for optimal QoS. If the controller decides
not to modify the current system configuration (thus choosing
to save time overhead over maintaining the desired QoS), it
may unfairly throttle the current activity. To remedy this, we
utilize a token manager to generate a token for the throttled
application that can be redeemed later to compensate for the
performance loss (Lines 18− 24).

C. Controller

Heretofore, we have (1) constructed application tuples with
similar dynamic phase change patterns (Section V-A), and (2)
designed a token-based DVFS policy to manage application

Algorithm 1 Throttle-Redeem Policy
Input: application tuple (τa , τb) to be executed side-by-side

1: . High-level overview of throttle-redeem policy implementation
2: function DVFS CONTROLLER(τa , τb , detectedPhase, #cores)
3: for τi ∈ (τa, τb) do
4: for mi ∈ #cores do . If previous config was different
5: if PREV PHASE(τi,mi) != detectedPhase then
6: if TOKEN MANAGER(τi, throttle) then
7: Do not change VF configuration
8: else . If throttle tokens are not available
9: selectedConfig ← SEARCH LUT(τi, targetQoS)

10: Assign selectedConfig to mi and memory BW
11: else . If prev config matches curr requirements
12: if TOKEN MANAGER(τi, redeem) then
13: selectedConfig ← SEARCH LUT(τi, redeemQoS)
14: Assign selectedConfig to mi and memory BW
15: else . If compensation is not allowed
16: selectedConfig ← SEARCH LUT(τi, targetQoS)
17: Assign selectedConfig to mi and memory BW
18: function TOKEN MANAGER (τi, actionToPerform)
19: if actionToPerform == throttle then
20: if tokenAvailable then
21: TokenValue ++ . Assign new token return true
22: else . Redeem prev assigned token
23: if redeemAvailable then
24: TokenValue - - , RedeemValue ++ return true
25: . Find phase of current activity from Activity Classification Table (ACT)
26: function DETECT ACTIVITY(τa , τb)
27: for τi ∈ (τa, τb) do
28: if FIND ACTIVITY(τi) then . When an activity is ready to run
29: detectedPhase ← SEARCH ACT(τi)

return detectedPhase
30: function MAIN(τa , τb)
31: detectedPhase ← DETECT ACTIVITY(τa , τb)
32: DVFS CONTROLLER(τa , τb , detectedPhase, #cores)
33: return

tuples with different resource usage patterns (Section V-B).
However, at runtime, we still need to vote for the best
system configuration based on the instantaneous phase of
an application activity and/or throttle-redeem decision(s) to
optimize system-wide energy consumption while maintaining
the desired QoS. We leverage the controller framework in [1]
to determine said trade-off between application performance
(i.e., QoS) and its system-wide energy dissipation as shown
in Algorithm 1 (Lines 2 − 17). The inputs to the controller
are (1) the LUT table(s) for a given application tuple (Ta-
ble I), (2) independent target QoS value(s) to maintain the
performance of each application in the tuple executing side-by-
side, and (3) the decision from the throttle-and-redeem policy
(Section V-B), along with the relevant activity-context and its
predicted resource usage pattern information from Table II.
The controller framework, with token manager (Section V-B),
decides when, and by how much, to throttle or compensate an
application. As will be shown in Section VII-D, the overhead
of our proposed runtime controller is negligible.

VI. EXPERIMENTAL SETUP

A. Experimental Platform

We implemented and tested our energy management frame-
work on a real-world smartphone, Pixel 2. It supports a default
energy management framework through several DVFS poli-
cies. Pixel 2 has a Qualcomm Snapdragon 835 chipset (with
big.LITTLE architecture switcher disabled) that extends the

necessary hardware and driver functionality to perform CPU
usage and cache-level traffic monitoring. Pixel 2 runs Android
Oreo. Starting from Android Nougat, all higher versions of
Android (including Android Oreo) supports the split-screen
mode of side-by-side execution for multiple applications on
the same device screen.

B. Applications with Offline Profiles
We select a list of five of real-world open-source appli-

cations assuming that these applications already have their
offline profiles stored in the system. The list of applica-
tions is as follows; (1) VidCon is a memory-intensive video
converter, (2) MobileBench simulates a web browser and
has both computation-intensive and memory-intensive phases
(3) Pokemon Go is a memory-intensive gaming application,
(4) Facebook is a reactive online application with multiple
processes, each of which uses different system resources,
and, (5) Spotify is another online audio and video streaming
application.

C. Applications without Offline Profiles
We also consider another list of five newly installed real-

world open-source applications for which we assume that no
prior offline profile exists. The list of applications is as follows;
(1) Media Converter is a video converter application with
similar resource usage patterns as MobileBench, (2) Android
Browser is the default web browser which comes with the
device, (3) Fruit Ninja a popular gaming application with
similar resource requirement to Pokemon Go, (4) YouTube
is an online audio and video streaming application and, (5)
Amazon Music, which is another online audio and video
streaming application.

D. Evaluation Metrics
Our objective is to evaluate the effectiveness of our proposed

framework with respect to the application performance and
system-wide energy consumption. We use IPC and application
makespan as metrics to define application performance. Both
of these evaluation parameters have been shown to be good
indicators of both CPU and memory performance, and are
highly sensitive to system workload [1], [7].

We compared our approach against three most closely
related works; the first work is the most closely related energy
management framework on side-by-side execution model on
Androids by Mukherjee et.al. [1] (henceforth denoted by MU).
Moreover, since the authors in [1] compare their work against
(1) the default Android governors (denoted as DG), and (2)
an energy management policy for concurrent workload in
embedded systems (henceforth referred to as WC) by Reddy
et.al. [11], it is only fair for us to evaluate our proposed policy
against these two as well.

VII. RESULTS

A. Applications with Offline Profiles
Given a set of real-world applications that have been pro-

filed offline a priori, our benchmark suite consists of applica-
tion tuples consisting of two real-world applications from our

TABLE III
SUMMARY OF IPC REDUCTIONS, ENERGY SAVINGS, AND MAKESPAN
INCREASE OF PROFILED APPLICATIONS USING PROPOSED APPROACH

COMPARED TO THE DEFAULT ANDROID GOVERNORS (DG),
CONCURRENT WORKLOAD CLASSIFICATION TECHNIQUE (WC) [11],

AND THE CLOSEST EXISTING WORK (MU) [1] ON PIXEL 2
Application

Tuple
IPC

reductions (%)
System-wide energy

savings (%)
Makespan

increase (%)
DG WC MU DG WC MU DG WC MU

VidCon/
Spotify

-1.4/
-2.1

+2.8/
+1.9

+3.7/
+3.8

+14.1 +11.5 +13.2 +2.3/
+3.6

-4.1/
-9.3

-3.6/
-11.2

Facebook/
MobileBench

-3.1/
-1.8

+2.2/
+2.5

+6.9/
+4.4

+19.6 +12.5 +16.1 +5.2/
+2.3

-3.5/
-1.6

-7.3/
-4.9

Spotify/
Pokemon Go

-1.7/
-0.5

+1.3/
+2.6

+2.4/
+3.1

+16.5 +13.1 +11.8 +2.2/
+1.9

-6.5/
-0.9

-8.2/
-1.2

TABLE IV
SUMMARY OF IPC REDUCTIONS, ENERGY SAVINGS, AND MAKESPAN

INCREASE OF APPLICATIONS WITHOUT OFFLINE PROFILES USING
PROPOSED APPROACH COMPARED TO THE DEFAULT ANDROID

GOVERNORS (DG), CONCURRENT WORKLOAD CLASSIFICATION
TECHNIQUE (WC) [11], AND THE CLOSEST EXISTING WORK (MU) [1]

ON PIXEL 2
Application

Tuple
IPC

reductions (%)
System-wide energy

savings (%)
Makespan

increase (%)
DG WC MU DG WC MU DG WC MU

Media Converter/
Amazon Music

-2.1/
-1.8

+2.3/
+0.7

+5.9/
+3.4

+12.2 +8.5 +11.6 +1.4/
+2.6

-3.1/
-4.8

-4.3/
-5.5

YouTube/
Android Browser

-2.5/
-0.5

+1.6/
+1.1

+3.5/
+3.7

+13.6 +6.0 9.2 +3.3/
+3.4

-2.1/
-3.7

-3.3/
-5.6

Amazon Music/
Fruit Ninja

-1.6/
-2.8

+4.1/
+0.6

+6.3/
+4.1

+12.7 +8.5 +11.5 +2.8/
+7.2

-2.5/
-0.3

-4.2/
-2.2

given set of applications. The activity-specific resource usage
patterns for each application in the corresponding application
tuple may or may not be similar to each other. We report on
the average value for performance and energy over 10 runs
per benchmark tuple in Table III on Pixel 2.

When compared to the closest work (MU), our approach
is able to save a significant amount of energy up to 20% for
all applications considered, along with improvements in IPC
up to 7% and an average reduction in makespan of up to
8%. Similarly, our approach can considerably save the system-
wide energy up to 20% over the default governor (DG) for all
applications considered, albeit with small hits in IPC of less
than 3% and with an average increase in makespan of up to
5%. Next, we will briefly discuss our findings for a selected
application tuple for brevity.

VidCon and Spotify form an application tuple with dissimi-
lar resource usage patterns. Spotify, predominantly a computa-
tion intensive application, has an uneven CPU utilization with
one core ending up with very high utilization for a long period
of time while the other cores show marginal utilization, with
short bursts of high usage. On the other hand, VidCon is a
highly memory intensive application. Therefore, we use the
token-based throttle-redeem DVFS policy whenever activities
of each application execute on the same core, thereby ensuring
a resource-aware and latency-aware system-wide energy con-
sumption. Across all governors, comparatively, our approach
is able to save a significant amount of energy up to 14% for
all applications considered, albeit with small reduction in IPC
of less than 2% and with an average increase in makespan of
up to 4%.

B. Application without Offline Profiles

In this set of experiments, we evaluate the robustness of
our approach when used for a combination of applications for

TABLE V
IPC REDUCTIONS, ENERGY SAVINGS, AND MAKESPAN INCREASE OF

AMAZON MUSIC (RUNNING WITH FRUIT NINJA) WITH VARYING
APPLICATION USAGE PATTERNS ON PIXEL 2

Application
tuple

IPC
reductions (%)

System-wide energy
savings (%)

Makespan
increase (%)

Monkey User Monkey User Monkey User
Amazon Music/
Fruit Ninja

-1.6/
-2.8

-1.4/
-1.2

+12.7 +10.5 +2.8/
+7.2

+1.9/
+5.1

which no prior offline profiles exist. Assuming that the set of
real-world applications listed in Section VI-B have their offline
profile readily available, we present a set of newly installed ap-
plications (in Section VI-C), all of which have not previously
been profiled offline. We tested our proposed framework on
the new applications running on Pixel 2 smartphone, and using
the offline profiles of the existing applications.

We compared our approach against the DG, WC, and MU,
and reported the average value of application performance
and energy consumption over 10 runs per benchmark tuple
in Table IV. Overall, our approach is able to save a significant
amount of energy up to 14% for all applications considered,
albeit with small hits in IPC of less than 3% and with an
average increase in makespan of up to 7%. Our results prove
that the technique of reusing the catalogue of offline profile
data for already installed applications can contribute to saving
a significant amount of system wide-energy, albeit with small
hits in IPC, and an average increase in makespan. We now
briefly discuss our findings for a few of the selected application
tuples for brevity.

Since Amazon Music work under a similar client-server
module as Spotify, utilizing the existing offline profile of
Spotify likely attributes to similar CPU usage and memory
access patterns. Likewise, Media Converter utilizes the offline
profile of VidCon that is present a priori. Since VidCon and
Spotify form an application tuple with dissimilar resource
usage patterns (as reported in Section VII-A), we utilize the
token-based throttle-redeem DVFS policy for the application
tuple Media Converter and Amazon Music. Our approach is
able to save a significant amount of energy up to 13%, albeit
with small reduction in IPC of less than 2% and with an
average increase in makespan of up to 3%.

We now discuss a special pareto-optimal case of application
tuple, Amazon Music running side-by-side with Fruit Ninja,
where our proposed framework performs the worst on Pixel 2.
Amazon Music uses the the already existing offline profile of
Spotify, while Fruit Ninja leverages an already existing gaming
application profile, Pokemon Go. Overall, our approach is able
to save a significant amount of energy up to 13% for all
applications considered. However, it incurs an IPC reduction of
3% and an average increase in makespan as high as 7%. The
primary reason for such QoS degradation can be attributed
to a very low degree of shared libraries between the two
gaming applications, resulting in a erroneous classification of
application resource usage profile. In such a case, we can either
(1) increase the granularity of the offline profile to improve the
phase detection mechanism, or (2) create an additional LUT
at runtime for future use.

C. Variable Usage Patterns

In order to test the effect of end users’ varying usage be-
havior pattern on application performance and energy savings,
we experimented on different combinations of application
tuples from a given set of real-world applications. Let us
consider an example application which performs worst with
our proposed framework, i.e., the tuple consisting of Amazon
Music and Fruit Ninja running side-by-side in split-screen
mode on Pixel 2. We run the application tuple for (1) 5
runs where we simulate pseudo-random usage patterns using
Monkey [16]; and (2) 5 runs with an actual user. We report our
findings in Table V. The results indicate negligible differences
in performance metrics with varying usage patterns between
Monkey and an actual user.

D. Overhead

While the time overhead associated with our offline phase
is not a bottleneck, we need to assess the overhead of the
online phase, which can be categorized into a setup phase and
a runtime phase. The setup phase classifies application tuples
based on their resource usage pattern. The tuple thus formed
will execute side-by-side at runtime. A controller, assisted by
a lightweight token-based throttle-redeem tool, changes CPU
frequency and memory bandwidth on the fly. The controller,
therefore, is the biggest contributor to the timing overhead
of our proposed solution. We set the period of the controller
to be 1 s (safe limit to perform all controller functions).
The timing overhead can be attributed to (1) searching the
activity classification table to attribute the current application
activity to be executed (less than 6 ms), (2) instantaneous
token generation and/or decision-making as to when to redeem
the token (less than 8 ms), (3) LUT search (about 9 ms on
average), and (4) actually setting new core frequencies and
memory bandwidth. Thus, the computation overhead of our
online phase is quite negligible. We choose an application
tuple Amazon Music and Fruit Ninja to evaluate the timing
overhead associated with our policy, as this tuple performs
worst within our framework. Table VI shows the incurred
overhead on Pixel 2 smartphone respectively, with varying
duration of controller period. The higher performance loss with
increasing controller period can be attributed to an inherent
design limitation reported in [1]. Since we leverage that work
in our implementation of the offline performance and phase
profiler, we see a similar trend of increased timing overhead
with scaling controller periods irrespective of our choice of
smartphone devices.

VIII. CONCLUSIONS

In this article, we presented a holistic system-level en-
ergy management solution for resource constrained embedded
systems, especially smartphones. We augmented an existing
fine-grained lightweight offline profile-based tool to capture
application-specific performance and memory traffic data, and
detect instantaneous phase changes of applications. An online
controller leverages application-specific phase change profiles
to find the most energy-efficient CPU frequencies and memory
bandwidth without sacrificing QoS. Experiments on the Pixel

TABLE VI
SUMMARY OF IPC REDUCTIONS, ENERGY SAVINGS, MAKESPAN

INCREASE, AND OVERHEAD OF AMAZON MUSIC (WITH FRUIT NINJA)
USING PROPOSED APPROACH COMPARED TO DEFAULT GOVERNOR WITH

VARYING CONTROLLER PERIODS ON PIXEL 2

Period IPC Energy Makespan Overhead
(in s) hits (%) savings (%) increase (%)

1 -1.6 (-2.8) +12.7 +2.8 (+7.2) 4%
2 -1.7 (-2.8) +12.6 +2.8 (+7.2) 5%
3 -2.9 (-3.2) +9.4 +4.2 (+7.9) 6%
4 -5.6 (-8.2) +7.0 +8.5 (+11.8) 6%
5 -6.1 (-9.2) +4.4 +11.2 (+13.6) 7%

2 smartphone with real-world Android applications validate
the feasibility of the proposed approach.

REFERENCES

[1] A. Mukherjee and T. Chantem, “Energy management of applications
with varying resource usage on smartphones,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2416–2427, 2018.

[2] R. Begum, D. Werner, M. Hempstead, G. Prasad, and G. Challen,
“Energy-performance trade-offs on energy-constrained devices with
multi-component DVFS,” in International Symposium on Workload
Characterization (IISWC), 2015, pp. 34–43.

[3] Android Developers, “Android 8.0 Behavior Changes,”
https://developer.android.com/about/versions/oreo/android-8.0-
changes.html, 2018.

[4] ——, “Background Location Limits,”
https://developer.android.com/about/versions/oreo/background-location-
limits.html, 2018.

[5] M. A. Rumi, D. H. Hasan et al., “CPU power consumption reduction in
android smartphone,” in International conference on Green Energy and
Technology (ICGET),, 2015, pp. 1–6.

[6] X. Li and J. P. Gallagher, “An energy-aware programming approach
for mobile application development guided by a fine-grained energy
model,” CoRR, vol. abs/1605.05234, 2016. [Online]. Available:
http://arxiv.org/abs/1605.05234

[7] K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and Y. Handong,
“Application-specific performance-aware energy optimization on android
mobile devices,” in International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 169–180.

[8] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom et al., “A 48-core ia-
32 message-passing processor with dvfs in 45nm cmos,” in 2010 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 2010,
pp. 108–109.

[9] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for
many-core architectures running multi-threaded applications,” in 2011
38th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2011, pp. 449–460.

[10] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra, “Phase-based
application-driven hierarchical power management on the single-chip
cloud computer,” in 2011 International Conference on Parallel Archi-
tectures and Compilation Techniques. IEEE, 2011, pp. 131–142.

[11] B. K. Reddy, G. V. Merrett, B. M. Al-Hashimi, and A. K. Singh, “Online
concurrent workload classification for multi-core energy management,”
in 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 621–624.

[12] Android Developers, “Android SDK,”
http://developer.android.com/sdk/ndk/index, html, 2013.

[13] X. Li, G. Chen, and W. Wen, “Energy-efficient execution for repetitive
app usages on big. little architectures,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2017, pp. 1–6.

[14] L. I. Kuncheva and L. C. Jain, “Nearest neighbor classifier: Simultaneous
editing and feature selection,” Pattern recognition letters, vol. 20, no.
11-13, pp. 1149–1156, 1999.

[15] Z. Lai, K. T. Lam, C.-L. Wang, J. Su, Y. Yan, and W. Zhu, “Latency-
aware dynamic voltage and frequency scaling on many-core architectures
for data-intensive applications,” in 2013 International Conference on
Cloud Computing and Big Data. IEEE, 2013, pp. 78–83.

[16] Android Developers, “Monkey Command-Line Emulator,”
https://developer.android.com/studio/test/monkey, (2018).

