
Optimized Trusted Execution for Hard Real-Time Applications
on COTS Processors

Anway Mukherjee†, Tanmaya Mishra†, Thidapat Chantem†, Nathan Fisher‡, Ryan Gerdes†
†Department of Electrical and Computer Engineering, Virginia Tech, USA.

Email: {anwaym, tanmayam, tchantem, rgerdes}@vt.edu
‡Department of Computer Science, Wayne State University, USA.

Email: fishern@wayne.edu

ABSTRACT
While trusted execution environments (TEE) provide industry stan-
dard security and isolation, its implementation through secure mon-
itor calls (SMC) attribute to large time overhead and weakened
temporal predictability, potentially prohibiting the use of TEE in
hard real-time systems. We propose super-TEEs, where multiple
trusted execution sections are fused together to amortize TEE exe-
cution overhead and improve predictability through minimized I/O
traffic and reduced switching between normal mode and TEE mode
of execution. Super-TEEs may, however, violate a task’s timing re-
quirement and impact the schedulability of the system. We present a
technique to enforce the correct timing requirement of a task, along
with a sufficient test for schedulability in uniprocessors. We also,
discuss CT-RM, a static task assignment and partitioned scheduling
algorithm to schedule super-TEEs, alongside other real-time tasks,
on multicore systems. Experimental results on a Raspberry Pi 3B,
further confirmed by simulations, show that CT-RM outperforms the
state-of-the-art technique in terms of usable utilization by 12% on
average and up to 27%.

1 INTRODUCTION
As real-time embedded systems become more complex and inter-
connected, certain sections or parts of the systems may need to be
secured to prevent unauthorized access, or isolated to ensure correct-
ness. In the case of hard real-time systems such as a surveillance
unmanned aerial vehicle (UAV), there is a need to provide security
while maintaining strict real-time deadlines. That is, the UAV may
collect confidential information such as surveillance co-ordinates.
An attacker could impersonate ground control and easily extract
such sensitive information from the system. In such cases, we must
isolate sensitive information from the rest of the system to prevent
such inadvertent leaks to an unauthorized party.

Trusted execution environments (TEE) [1] are a widely used so-
lution for industry standard platform-level security in embedded
systems. TEE provides virtualization for a secure execution envi-
ronment by leveraging architecture-specific hardware security ex-
tensions to protect and isolate information from access by a third

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RTNS 2019, November 6–8, 2019, Toulouse, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7223-7/19/11. . . $15.00
https://doi.org/10.1145/3356401.3356419

party [2, 3]. The wide spread availability of TEE in commercial-off-
the-shelf (COTS) systems (1) dramatically reduces the need for the
costly development and manufacturing of custom hardware solutions
such as hardware-based encryption, code obfuscation, etc. [4, 5],
and, (2) allows for quick redeployment as platform virtualization
on top of ARM TrustZone enabled security extensions. However,
it may be challenging to adopt TEE in hard real-time systems, as
TEE can incur large time overhead and highly variable execution
times [6]. Specifically, each instance of TEE execution (in ARM
TrustZone) is initiated by a setup phase and exits through a destroy
phase. Since TEE leverages architecture-specific secure monitor
calls (SMC) to realize these phases, the time overhead associated
with TEE execution, including setting up and tearing down a TEE
session, requires 18,500 µs on a Raspberry Pi 3B (Rpi 3B) (Table 1).
Moreover, data/instruction fetches and writebacks during TEE exe-
cution is a major cause for large variation in task execution times,
thus weakening predictability.

In this work, we focus on TEE supported by ARM TrustZone,
as the latter is popular in smartphones and other embedded mo-
bile devices [7], while Intel SGX primarily targets resource-rich
servers [8]. Our objective is to reduce the overall number of SMCs
in applications where multiple sections of the code that must run in
TEE are fused together to (1) amortize the time overhead associated
with SMCs, (2) minimize the associated I/O traffic (memory fetches
and writebacks) since they are the primary source of variable time
overhead, and, (3) improve the temporal predictability of the system
by reducing the number of switching between secure and non-secure
environments due to SMCs. We also present a task assignment and
scheduling framework for real-time trusted execution on readily
available multicore systems. Since our work focuses on optimizing
trusted executions for use in hard real-time systems without chang-
ing the underlying TEE implementation, we do not examine the
security benefits and drawbacks of TEE. Instead, readers are referred
to existing work [9–11]. Our main contributions are:

(1) We present our approach for reducing TEE overhead by forming
super-TEEs, which involve fusing together two or more secure
code or application sections that require TEE. We describe a task
model to represent a super-TEE, discuss a technique to enforce
timing correctness, and derive a sufficient condition for schedula-
bility for super-TEEs and other real-time tasks on uniprocessor
systems under a fixed priority scheduling scheme.

(2) We propose a fixed-priority task-to-core assignment and parti-
tioned scheduling technique called CT-RM for multicore systems.
We show that our approach never performs worse, and in fact often
outperforms the widely used first-fit partitioned rate-monotonic

https://doi.org/10.1145/3356401.3356419

CPU Core

Secure Monitor Mode

Non-Trusted Environment

Application

OS

TEE Application

TEE Kernel

DRAM SRAM Co-Processor
Registers Peripheral

Storage

Trusted Environment

Trusted Sections Non - Trusted Sections

Figure 1: Architecture-specific platform security extensions for TEE in
CPU, memory subsystem and peripheral storage.

scheduling algorithm for multicore systems. We validate our ap-
proach and assess its performance in a custom-built simulated
environment.

(3) We validate our approach on a Raspberry Pi running Linux (with
preempt-RT patches for real-time behavior) and OP-TEE, an
open-source TEE implementation.

2 PRELIMINARIES
2.1 ARM TrustZone
The ARM TrustZone [12] is an embedded and secure virtualiza-
tion platform for COTS embedded systems. Platform virtualization
enables enhanced system security through either (1) TEE or, (2)
trusted platform module (TPM). TEE consists of a virtualized envi-
ronment where code that requires trusted execution can be securely
executed in isolation from the entire system. Figure 1 shows two
separate execution environments, namely normal world (running
the non-trusted OS) and secure world (running the trusted OS). The
trusted OS, in comparison to non-trusted OS, has limited hardware/-
software features, and reduced functionality. The TEE and non-TEE
cannot simultaneously execute on same processor core since the
processor can be in one mode only at any given time, but can run
in parallel on separate cores. Communication between TEE and
non-TEE environments during a mode switch is established through
an architecture-specific secure message passing protocol.

In non-trusted execution environment, the non-secure applica-
tions, i.e., those that do not require TEE execution, run on standard
embedded hardware resources. In a trusted environment, all trusted
execution code and its data are stored in, copied to, and executed
in isolation on specially augmented secure hardware resources, e.g.,
CPU, memory, and peripherals. These secure hardware extensions
provide data encryption to protect secure environment data/code
from being accessed by the non-trusted software. The trusted OS
may also logically deactivate a subset of existing secure peripherals
in respective execution environments in order to minimize the proba-
bility of unauthorized access on unprotected peripherals. TrustZone
software delimits the code running in normal world from changing
the secure OS system state. This means that if an attack is routed
through the normal OS, it is confined to the access privileges of only
the non-secure environment. On the other hand, trusted OS is vulner-
able to internal attacks. A security breach can happen through the
secure OS if a trusted application chosen to run on TEE is inherently

ARM TrustZone Enabled Chip Set (ARM Trusted Firmware)

TEE Client API

TEE Supplicant TEE Driver

 TEE Trusted
Application (TA)

TEE Internal API

Hardware Abstraction Layer

Trusted Hardware Resources
ARM Hypervisor

Non-Trusted OS Trusted OS

Secure
Monitor Calls

Non-TEE
 Application

Non-TEE
 Application

 TEE Trusted
Application (TA)

Context Switch
Back After

TEE
Execution

Secure
Monitor

Call

Figure 2: Design framework of the ARM TrustZone software stack
showing the flow of execution and data exchange between the secure
and non-secure execution environments.
malicious. Hence, it is the programmer’s responsibility to ensure that
the trusted applications do not inadvertently introduce any security
vulnerabilities.

2.2 Open Portable Trusted Execution
Environment (OP-TEE)

OP-TEE [13] is an open-source TEE implementation by Linaro to
integrate ARM-compatible standard Linux with ARM TrustZone. It
uses the standardized GlobalPlatform TEE specifications [14] to con-
struct a framework for ARM TrustZone to co-exist with a standard
Linux distribution. Figure 2 shows the detailed setup of an OP-TEE
port into a Linux environment. The OP-TEE OS consists of three
main components, (1) a hardware abstraction layer which forms the
backbone of platform virtualization and provides a communication
channel with the non-trusted OS, (2) a minimal secure kernel and its
associated TEE internal APIs to support trusted execution and (3)
a set of trusted applications which can run in isolation on OP-TEE
OS. Similarly, the co-existent non-trusted OS is augmented with a
secure interface to communicate with a trusted application.

Non-secure applications use the TEE-client APIs exposed by
the OP-TEE driver implemented in the Linux kernel. When a non-
secure application requests for TEE, the driver intercepts the SMC,
suspends the calling application and triggers an SMC handler in
the OP-TEE OS. The OS then loads the required TA in a secure
kernel thread, executes the TA and switches back control to the
non-trusted OS. When an interrupt comes from either secure or
non-secure world, OP-TEE OS saves the TA context and suspends
it, triggers the interrupt handler (or switches to normal world and
triggers the handler there if it is a non-secure interrupt), reloads
the TA context and continues execution. Note that a TA need not
continue its execution on the same core after reload.

The OP-TEE OS implementation does not have a process sched-
uler. Hence, it uses the process scheduler of the host OS to run its
secure kernel thread. However, OP-TEE OS maintains an active se-
cure thread stack to service non-secure interrupts, thread migration
and premature process termination. Note that the trusted OS reserves
the right to define and service its security specific implementations.
For more details regarding OP-TEE, readers are referred to the Glob-
alPlatform specifications [14] and OP-TEE project website [13].

2.3 System Model
We assume a set of homogeneous cores P, where each core pj ∈ P,
can switch between secure (TEE) and non-secure (non-trusted OS)

2

 TEE EXECUTION (υi)

(C i
1)NORMAL EXECUTION

NORMAL EXECUTION (C i
2
)

Ci

(C i
1)

τ i

Time

C
i
1 C

i
2

υi

TEE EXECUTION NON-TEE EXECUTION

SMC SMC

(a)

0 1 2 3 4 5 6 7 8 9 Time

τ1 τ1 τ1 τ1

0 1 2 3 4 5 6 7 8 9 Time

τ3

0 1 2 3 4 5 6 7 8 9 Time

τ2

HYPERPERIOD

τ3 τ3 τ3

(b)

Figure 3: (a) Our real-time task model. For a task τi without TEE re-
quirement, υi = C2

i = 0; (b) Example offline profiling of the task set
(Table 7) for super-TEE construction.

mode of operation using SMCs. While the non-secure mode is used
for executing normal real-time tasks, the secure mode runs TEE
sections of code. In addition, we consider a set of n independent syn-
chronous periodic hard real-time tasks, which have been re-factored
to isolate TEE sections from its non-secure execution segments [6].
Therefore, each task τi , i = 1, . . . ,n, can be described by the fol-
lowing tuple: (Ti , C1

i , υi , C2
i), where C1

i and C2
i are the worst-case

execution times (WCETs) in non-secure mode, and υi is the WCET
in TEE mode, and Ti is the period of execution. We assume that
deadlines are equal to periods. Figure 3(a) depicts our real-time task
model. For a task with TEE requirements, two normal computation
segments (Cqi q = 1, 2) are interleaved by a single trusted execution
segment1 (υi). Similarly, for a task τi that does not require TEE,
υi = C

2
i = 0. The upper bound on the combined WCET of a task τi

is given by Ci =
2∑

q=1
C
q
i + υi .

We consider partitioned scheduling in this work and will leverage
the first-fit rate-monotonic (RM-FF) scheduling policy (Section 5). A
sufficient utilization based test for RM for a uniprocessor is restated
below. The utilization Ui of task τi is defined as Ci

Ti , and the utiliza-
tion of a task set (UT) is the sum of the utilization of all the tasks,
n, in the task set, i.e.,

∑n
i=1Ui . Since we target multicore systems

in this work, the Liu-layland (LL) limit [15], given by Equation 1,
is used to perform per-core schedulability test when task to core
assignment is carried out.

n∑
i=1

Ci
Ti
≤ n(2

1
n − 1). (1)

Note that any bound can be adapted for use in our framework.
However, we choose the LL limit since it has low computational
complexity and can easily be calculated based on the number of
tasks [16]. Other schedulability tests can be used, and is left for
future work.

2.4 Creating Trusted Execution Segments
A TEE section delimits the private and/or sensitive section of the
source code (Figure 4). We list the process of partitioning a task
1Though we consider a single trusted execution interval for simplicity, it is not advisable
to have multiple TEE execution sections interspersed with non-secure computation
segments within a TEE task, since each trusted execution has high time overhead
(Table 1).

Trusted
Execution

Section

1

2

Trusted
Execution

Environment
(TEE)

TEE SectionTEE Task

Detect

And
Detach

OP-TEE
Internal API

Trusted Application
(TA)

EXECUTE

4

TEE
 Client API

Non-Trusted
Execution

Environment Execute

Normal Application

Non-Trusted

Application
Code

Communication
Channel

(Secure Monitor
Call)

Call To
Execute TA3

Figure 4: Step-by-step example showing how to convert a software pro-
gram into separate executable.

Table 1: TEE overhead on RPi 3b running OP-TEE
API name Latency in us

TEEC_InitializeContext() 200
TEEC_OpenSession() 17000
TA_InvokeCommand() 250
TEEC_CloseSession() 1200
TEEC_FinalizeContext() 100

with TEE requirements into a secure and non-secure executable.
We use an existing work [6] to automatically partition the original
code around a segment which is annotated by the software developer
to demarcate for TEE computation into a non-trusted executable
(step 3), and a trusted application (step 2) as shown in Figure 4.
Step 1 takes a task τi with trusted execution requirements, identifies
the annotated TEE section (υi), and detaches it from the original
source code. In step 2, we take the detached TEE segment (υi),
instrument it with TEE-specific internal APIs, and create a separate
executable known as trusted application (TA). Similarly, in step 3,
we instrument the non-trusted section(s) of the code (Cqi q = 1, 2)
with TEE-specific interfaces to link it to the TA, and create a separate
normal non-secure executable. Finally, the two executable form a
sequential flow of execution wherein the non-secure executable in
the non-trusted OS starts its execution followed by a switch to the
TEE to run the TA in step 4. Ultimately, TA execution returns the
context back to non-secure executable to complete further execution.

3 MOTIVATION
While TEE provides industry standard certification, security and iso-
lation, its use in hard real-time systems is challenging. As previously
reported [6], and verified through experimentation (Table 1), the time
overhead associated with SMCs is large. The increase in WCETs for
TEE execution can be primarily2 attributed to architecture-specific
SMCs to setup and destroy a trusted environment for secure exe-
cution. Note that while this increase in tasks’ WCETs can be con-
sidered during schedulability analysis, many systems are resource
constrained. In addition, it is not feasible to always keep TEE ses-
sions open since a single TEE session is limited by the size of its
secure private cache (4KB for our board). Said cache is used to store
and execute the trusted executable, along with any other required
data. Hence, the number of applications/trusted segments that can
execute in a single session is limited. Even if the size of the secure
private cache is large, always keeping TEE sessions open would

2Running a TEE section on a processor requires an exclusive access for the trusted OS
to execute the trusted segment on that particular core (i.e., the core must be in secure
mode and not normal mode). While interrupts exist to switch back to the non-trusted
environment and service normal execution, a mode change adds to the time overhead
associated with trusted execution.

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Time

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Time

(b)

FUSED TEE SECTIONS

OVERHEAD DUE TO
TEE-SPECIFIC SMC CALLS

OVERHEAD DUE TO
TEE-SPECIFIC SMC CALLS

OVERHEAD DUE TO
TEE-SPECIFIC SMC CALLS

TEE EXECUTION

NON-TEE EXECUTION

SETUP TEE CONTEXT &
OPEN SESSION

CLOSE SESSION &
DESTROY TEE CONTEXT

SMC #1

SMC #2

SMC #3

SMC #1 SMC #2 SMC #3

SMC #4

SMC #5

SMC #6

τ A τ A τ A τB τB τB τB τB τB

τ A τ A τB τ AτB τB τB τB τB

SMC INITIATED FROM
NON-SECURE OS

SMC RETURN FROM
SECURE OS

Figure 5: A motivating example where (a) two tasks need six SMC calls
to access two separate instances of TEE execution, but, (b) fused TEE
execution sections reduce the number of SMC calls to three.

Table 2: Task Set 1

Task
(τ) C1

i υsi υti υdi

υi =

υsi + υ
t
i + υ

d
i C2

i

C =
2∑

q=1
Cqi + υi T

τA 1 2 3 1 6 1 8 16
τB 2 2 2 1 5 3 10 17

mean dedicating a fixed number of cores to running TEE, resulting
in a less efficient use of computing resources since these cores may
often be idle. In addition, no intra-task communications are permit-
ted during TEE execution by virtue of TEE security. For trusted
segments requiring data for trusted computation, a new TEE session
has to be open to load such data into the secure private cache, even
if such inputs were generated from other trusted segments. In this
work, we propose to amortize the time overhead associated with
each call for secure execution in TEE by grouping two or more tasks
which have TEE sections and fuse their trusted execution sections
together into a super-TEE (Section 4).

We now provide a simple example to show how forming a super-
TEE can help to decrease tasks’ collective worst-case execution time
(WCET). In this example we will ignore task deadlines for clarity.
Consider two tasks τA and τB shown in Table 2. Let us assume
that both tasks contain sections that require TEE execution. The
upper bound on the non-trusted segment for both tasks τA and τB ,

given by
2∑

q=1
C
q
i , is equal to 2 and 5 respectively. Similarly, the upper

bound on the trusted execution section, given by υi = υ
s
i + υ

t
i + υ

d
i ,

is equal to 6 and 5 respectively, where SMC_setup is denoted by
υsi , SMC_destroy by υdi and the actual trusted computation duration
inside TEE by υti . Hence, CA and CB equal 8 and 10 time units,
respectively. Figure 5(a) shows a possible schedule if we were to
execute τA and τB separately. Figure 5(b) shows how the collective
WCET of τA and τB , now 15 time units since υAB = 2 + 3 + 2 +
1 = 8, is reduced when a super-TEE is formed. Clearly, reducing
WCETs can help to improve schedulability. However, while fusing
the TEE execution sections of tasks results in improved collective

WCET, such a modification may change the collective period of the
tasks under consideration, thereby, potentially violating the timing
requirements of the tasks, and increasing the total system utilization.
We address these challenges next.

4 OFFLINE SUPER-TEE CONSTRUCTION
We construct super-TEEs to amortize TEE execution overhead while
maintaining logical and timing correctness. A super-TEE is defined
as a real-time task consisting of a single secure section or code
that require TEE execution, formed by fusing together the trusted
execution sections of two or more real-time tasks. Since secure
memory locations are allocated contiguously in TEE [13], we exploit
the high spatial locality for secure memory locations to amortize the
overhead associated with I/O transactions during trusted execution.
We first introduce super-TEE and its construction while maintaining
its logical correctness, followed by its representation using a real-
time task model, and discuss its timing correctness. Finally, we
present a technique to select which tasks to form super-TEEs to
maximize the schedulability of the system.

4.1 Task Partitioning and TEE Fusions
The process of creating super-TEEs is carried out once offline. In
this section, we discuss how to fuse TEE sections together. The
question on which actual TEE sections to fuse together will be ad-
dressed in section 4.5. For the sake of simplicity, we consider fusing
the TEE sections of two tasks in this paper. However, our approach
can be applied to an arbitrary number of tasks with harmonic peri-
ods [17]. Section 2.4 explains the process of partitioning tasks with
TEE requirements into separate executables. The υi section forms
a separate trusted executable (TA) from the C

q
i q = 1, 2 sections

which is collectively denoted by a client application (CA). The TA
is invoked by the CA through SMCs (Figure 4).

We focus on independent tasks for super-TEE construction in this
work. Before fusing the TEE sections, each task τi is profiled for
its real-time periodic behavior. That is, each task is run in isolation
on a uniprocessor to determine when it would execute. We then
collect this information over a hyperperiod (Figure 3(b)). Then, an
existing framework [18] is leveraged to calculate the overlapping
execution sections for each task tuple, and the data collected is
stored as entries in Table 8. We then ascertain whether the TA is
independent by checking the memory page access (using an existing
automated tool [6]) and record the memory footprint of each TA.
Since the maximum available private secure cache size in TEE is
limited by its architecture-specific design constraint, the task-specific
secure cache footprint delimits the number of TEEs that can be fused
together so that super-TEE does not exceed the secure cache limit.
We merge both TA-specific code/data into a single executable and
augment the fused TA to pre-fetch the memory address blocks of
the TAs of the fused tasks (example below). Merging multiple TEE
sections into a single TA allows it to be loaded once, followed by
multiple function calls, one for each of the TEE sections resulting
in sequential execution. The trusted OS maintains the context of the
secure execution (including instructions and meta-data not visible
to the non-trusted OS). Our approach avoids the intermediate steps
of unpredictable and time-consuming I/O transactions (memory
writeback for the current TEE section of a task carried out while

4

performing memory fetches for the subsequent TEE execution of the
other task), leading to an improved overall temporal predictability.
We also merge the CAs into a single executable while maintaining
the overall temporal correctness of the tasks (see Section 4.3). To
regulate our assumption, we ensure the isolation of data/instructions
in the non-secure segments of the super-TEE during the offline
profiling step. More importantly, the software developer must utilize
an existing automated approach [6] to maintain the separation of
resource between two CAs. The fused CA and its corresponding
fused TAs form a super-TEE.

Figure 6 illustrate an example code transformation [6] to con-
struct a super-TEE. Lines 1 − 19 show two independent tasks τ1 and
τ2, both of which require TEE execution. In task τ1, funcA() and
funcC() form non-trusted execution sections, while funcB()
requires TEE execution. Similarly, for τ2, funcX() and funcZ()
constitute the non-secure execution sections, while funcY() re-
quires TEE execution. Lines 21 − 36 show re-factored code (CA)
where tasks τ1 and τ2 are fused to form super-TEE while maintaining
its logical correctness. Finally, Lines 38−45 show the corresponding
trusted segments of tasks τ1 and τ2 which have been partitioned into
single TAs for TEE execution. The Super-TEE calls TAs using TEE
client APIs as demonstrated in lines 29 − 30 (Figure 6).

4.2 Security Impacts
We make the observation that TEE overhead can be reduced with
minimal (possibly no) security impact on trusted execution since our
approach does not require modifications to TEE. Specifically, each
trusted segment executes within a secure isolated context (TEE),
which is implemented and maintained within the trusted OS. All in-
structions and meta-data specific to its execution is contained within
its own secure thread in the trusted OS. Since each TEE execution is
initiated from the non-trusted side, it requires a switch back from the
trusted environment. In such a case, the trusted OS (i) maintains the
context of the secure execution (not visible to the non-trusted OS)
before (ii) resetting the execution environment while transferring the
control over to the non-secure side. Constructing a super-TEE by
fusing two separate trusted execution segments, thus, simply implies
that both will run inside the same trusted environment, however, on
isolated secure threads. While this ensures that an attacker in con-
trol of a task that includes TEE execution cannot subvert either the
original trusted execution sections or the fused ones it, nonetheless,
potentially allows for side channel attacks [19, 20] in some task
instances (e.g., for fused tasks that accept attacker-controlled input)
because the context (including registers and caches) is not securely
removed between TEE sections.

For example, consider that two tasks τA and τB require TEE
execution, and are fused to form a super-TEE task. Assume that an
attacker can control the input to the non-TEE client application (CA)
executable of task τB , which runs directly after task τA, which itself
has sensitive data stored in the cache. Furthermore, assume that τB
performs computations on the input data that results in cache access
and that the attacker understands how this occurs (i.e., attacker has
access to tasks τA and τB ’s code). If the compromised non-TEE
executable (CA) the attacker controls allows the attacker to make
timing measurements, it may be possible for the attacker to recover

1 main(){ //Task τ1
2 funcA(); //Non−trusted code

3 funcB(); //Call funcB()

4 ...

5 funcC();//Rest of non−trusted code
6 }

7 //Annotated Segment: assume requires TEE execution

8 int funcB(){

9 ... } //Segment END

10
11 main(){ //Task τ2
12 funcX(); //Non−trusted code

13 funcY(); //Call funcY()

14 ...

15 funcZ();//Rest of non−trusted code
16 }

17 //Annotated Segment: assume requires TEE execution

18 int funcY(){

19 ... } //Segment END

20

21 //Super-TEE

22 main(){

23 funcA(); //Non−trusted code: Task τ1
24 funcX(); //Non−trusted code: Task τ2
25 //Start TEE execution using TEE client APIs

26 TEEC_InitializeContext(...);//Set up TEE context
27 TEEC_OpenSession(...); //TEE entry

28 //Call trusted applications (TAs)

29 TEEC_InvokeCommand(funcB,...);//TEE call: Task τ1
30 TEEC_InvokeCommand(funcY,...);//TEE call: Task τ2
31 TEEC_CloseSession(&sess);

32 TEEC_FinalizeContext(&ctx); //End TEE execution

33 ...

34 funcC()//Rest of non−trusted code: Task τ1
35 funcZ()//Rest of non−trusted code: Task τ2
36 }

37

38 //TA code: run in trusted execution environment

39 static TEE_Result funcB(...){

40 ... //funcB() body

41 return TEE_SUCCESS;}

42 ...

43 static TEE_Result funcY(...){

44 ... //funcY() body

45 return TEE_SUCCESS;}

Figure 6: Code snippet of two example tasks τ1 and τ2 which need to be
re-factored for TEE execution, and fused into super-TEE and its corre-
sponding trusted segments (TAs).

data from the cache [19, 20] based on how long computations take
for task τB .

A possible solution to mitigate this threat would require flushing
of cache (and clearing of CPU registers) between execution of two
separate TEE sections for tasks τA and τB . Experimental results on
our hardware test bed (Rpi 3B) shows an overhead of 22 µs to flush
out up to 4 KB of secure cache data.

4.3 Super-TEE Task Model
While discussing the construction of a super-TEE in the previous
section, we focused on the logical correctness of the tasks. We now
examine the timing aspects of a super-TEE in this section. Let us
revisit our motivating example in Section 3 where the corresponding
synchronous task set is shown in Table 2. Let us consider fusing τA
and τB together to form a super-TEE. Since τA and τB have different
periods, there are two challenges associated with upholding temporal
correctness: (1) executing the super-TEE with τB ’s period (17 time
units) may be logically incorrect since τA (with smaller period)
needs to run more frequently, and, (2) executing the super-TEE with

5

Table 3: Task Set 2
Task (τ) C T

τA 1 3
τB 1 7

Table 4: Modified Task Set 2

Task (τ) Cpeak Cnml T l

τAB 1.7 1 3 2

τA’s period (16 time units) may result in unnecessary resource usage
since τB (with larger period) needs to run less frequently. Therefore,
the challenge is to ascertain the time intervals where both τA and
τB execute so that we can run the super-TEE, while at other times
we run only τA since it is the task with a lower period. We model a
super-TEE as a variant of the multi-frame task model [21]. A super-
TEE task τi j constructed by fusing synchronous tasks τi and τj is

defined as (Ti j , C
peak
i j , Cnml

i j , li j). Ti j , defined as the period of the
super-TEE task τi j , is set as min{Ti, Tj}. In our example task set
(Table 2), TAB = 16, since the period of task τA is shorter than task
τB . The execution time parameter Cpeak

i j corresponds to the WCET
of a frame when the fused TEE section is running, and is calculated
using the equation 2. Similarly, Cnml

i j corresponds to the WCET of a
frame when the fused TEE section is not running, and is calculated
using the equation 3. From Equations 2–3, we know that for each
job instance of the task-tuple {τA,τB } which coincides with the
fused TEE section runs with a WCET of Cpeak

AB = 15 time units, as
discussed in Section 3, while the job instance which corresponds to
non-fused TEE execution has a WCET of Cnml

AB = 8 time units , i.e.,
the WCET of τA, the task with the smaller period.

C
peak
i j =

2∑
q=1

[
C
q
i +C

q
j

]
+ υi + υj − (υ

s
j + υ

d
j). (2)

Cnml
i j = Ci =

2∑
q=1

C
q
i + υi . (3)

li j =
⌊ Tj
Ti j

⌋
(4)

The parameter li j captures the minimum inter-peak frame distance
such that every li j consecutive frames contain at most one peak
frame. In our example, since at every 16 time units interval, there
must be at most one Cpeak frame to account for each job instance of
tasks τA and τB , we set lAB = 1 (Equation 4). Tasks which are not
super-TEEs have Cpeak = Cnml . Now, for each task τi = (Ti , C

peak
i ,

Cnml
i , li) in the task set Ψ = {τi : i = 1, . . . ,n} the total task set

utilization is given by

UT =
n∑
i=1

[
Cnml
i
Ti
+
C
peak
i −Cnml

i
liTi

]
(5)

The revised real-time parameters of the tasks in the task set (Ta-
ble 2) is represented by the tuple (16, 15, 8, 1), where TAB = 16,
C
peak
AB = 15, Cnml

AB = 8, and lAB = 1.

4.3.1 Example #1: Let us consider two tasks with co-prime time
periods. The real-time parameters of the tasks in this task set is given
in Table 3. We will now help the readers walk-through the process
of generating real-time parameters for this task τAB. We consider
that each task has trusted segments that need to run in TEE. The

upper bound on worst-case execution time (
2∑

q=1
C
q
i + υi) for both

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time

τ A τ A

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time

τB

C AB
nml

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time

C AB
peak

τ A τ A τ A τ A

τB τB

C AB
peak C AB

peak
C AB

nml C AB
nml

Figure 7: A example execution instant of the super-TEE (Table 4).
Table 5: Task Set 3

Task (τ) C T

τA 1 3
τB 1 4

Table 6: Modified Task Set 3

Task (τ) Cpeak Cnml T l

τAB 1.7 1 3 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time

τ A τ A

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time

τB

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time

τ A τ A τ A τ A

τB τB

C AB
nmlC AB

peak

τB

C AB
peak C AB

peak C AB
peak C AB

nml

Figure 8: A example execution instant of the super-TEE (Table 6).

tasks τA and τB is set at 1. Also, let us assume that the total SMC
overhead (υsi and υdi) for both tasks is 0.3 time units. Therefore, using

Equations 2–3, we haveCpeak
AB = 1.7 andCnml

AB = 1. Similarly,TAB is
set to 3 (min{TA,TB}). From Equation 4, we know that lAB equals
to 2, and super-TEE maintains temporal correctness as long as each
(TAB · lAB) time interval contains at most oneCpeak frame (Figure 7).
Note that at time 0, a job of τA and τB has each been released and
so the super-TEE can execute its Cpeak

AB frame (fused TEE section).
In contrast, at time 6, the super-TEE will have to run its Cnml

AB frame
since a new job instance of τB is yet to be released. Hence, the
next Cpeak

AB frame can only be formed at time 9. The same pattern is
repeated after every hyperperiod of τAB (the least common multiple
of the periods of τA,τB). The modified task set is shown in Table 4.

4.4 Feasibility of Super-TEE Candidates
The main objective for fusing TEE execution sections together is to
save CPU cycles every time an instance of a super-TEE is scheduled
as shown in Figure 5. While fusing the TEE execution sections of
tasks reduce the collective WCET, such a modification may change
the collective period of the tasks under consideration, thereby, in-
creasing the total system utilization. We present a schedulability

6

analysis to determine whether a super-TEE candidate is in fact feasi-
ble, i.e, the super-TEE candidate will not cause an increase in the
total system utilization. A task-tuple, i.e., super-TEE candidate, that
fails to meet the condition stated in Theorem 1 is removed from
further consideration. That is, the tasks will execute independently
without having their TEE sections fused as shown in Algorithm 2.

Observe that in Example #1 (Section 4.3.1), even though a new
job of task τB is released at time 7 (Figure 7), it can only start within
the next frame of super-TEE (Cpeak) at time 9. We now discuss a
requirement with regards to the delay between the release time and
the start time for a task that any super-TEE must follow. Let us
consider the task set in Table 5 where an execution instant of the
modified task set (Table 6) after super-TEE construction is illustrated
in Figure 8. At time 6, if a higher priority job preempts the super-
TEE job for longer than 0.3 time units, task τB within Cpeak frame
will miss its deadline even though the super-TEE itself will not. To
guarantee the timeliness of individual tasks τA and τB that forms a
super-TEE, we must have at least one job of τA completely contained
within each period of τB . We start with the following lemma.

LEMMA 1. Let us consider a super-TEE candidate, which con-
sists of the task-tuple {τi , τj }. IfTi ≤ Tj and 2 ·Ti −дcd(Ti ,Tj) ≤ Tj
where gcd() denotes the greatest common divisor, then each job of
the super-TEE candidate with period Ti is guaranteed to meet the
individual deadlines of tasks τi and τj .

PROOF. We leverage cyclic scheduling of synchronous periodic
tasks [22], which are invoked in frames. Each frame of length m that
invokes a job of a task τk must start after the job arrival and end
before the job’s period to guarantee schedulability, also given by,

m + (m − дcd(m,Tk)) ≤ Tk , (6)

where Tk is the period of task τk and, gcd is the greatest common
divisor. For our super-TEE candidate {τi , τj }, the period is set at
min (Ti, Tj) (Section 4.3). To guarantee the timeliness of individual
tasks τi and τj that form a super-TEE, we must have at least one task
of τi (i.e., equivalent to a frame) completely contained within each
period of execution of τj . Therefore, Equation 6 can be rewritten as
2 ·Ti − дcd(Ti ,Tj) ≤ Tj , and the lemma holds. □

LEMMA 2. Let us consider a super-TEE candidate, which con-
sists of the task-tuple {τi , τj }. Then, Ci j < Ci +Cj .

PROOF. Let us assume that the upper bound on the worst-case
computation time by fusing the task-tuple {τi ,τj } into a super-TEE
τij is denoted by Ci j . From Equation 2, we have,

Ci j = C
peak
i j =

2∑
q=1

C
q
i + υi +

2∑
q=1

C
q
j + υj − (υ

s
j + υ

d
j),

Ci =
2∑

q=1
C
q
i + υi , and Cj =

2∑
q=1

C
q
j + υj . We define C ′j =

2∑
q=1

C
q
j +

υj −(υ
s
j +υ

d
j). SinceC

′

j < Cj , we haveCi j < Ci +Cj , and the lemma
holds. □

We are now ready to present a sufficient condition for schedula-
bility of a super-TEE candidate for a given task set.

THEOREM 1. Let us consider a task set Ψ that is deemed schedu-
lable according to the LL limit (Equation 1). Further, let us consider

Table 7: Original Task Set

Task (τ) C1 υ C2 C T

τ1 0.2 0.7 0.1 1 2
τ2 0.6 0 0 0.6 8
τ3 0.1 0.8 0.1 1 2

Table 8: Candidate super-TEE profiles
Task-tuple $ Footprint # Concurrent jobs Execution Overlap Rank

{τ1, τ2 } 20% 1 0.6 2
{τ1, τ3 } 10% 4 1 1
{τ2, τ3 } 20% 1 0.6 2

a super-TEE candidate, which consists of the task-tuple {τi , τj },
where τi , τj ∈ Ψ. Let us refer to this task tuple as τij , which can
be modeled as discussed in Section 4.3. If lemma 1 holds, and
Ci ≥ Cj , Ti ≤ Tj , and Cj

C ′j
≥

Tj
Ti , where C ′j = Cj − (υ

s
j + υ

d
j), then

Ψ′ = (Ψ ∪ τij) − τi − τj is also schedulable per Equation 1.

PROOF. According to Lemma 2, we have Ci j < Ci +Cj . Given
that Ψ is RM schedulable according to Equation 1, Ψ′ is also schedu-
lable if U (τij) ≤ U (τi) +U (τj). We know that

U (τij) =
Ci +C

′

j

Ti

Given that Cj
C ′j
≥

Tj
Ti , then we can replace C

′

j in the above equation

with Cj ·Ti
Tj , and get,

U (τij) ≤
Ci +

Cj ·Ti
Tj

Ti

≤
Ci ·Tj +Cj ·Ti

Tj ·Ti

≤
Ci
Ti
+
Cj

Tj

≤ U (τi) +U (τj).

□

An important consequence of Theorem 1 is that if the original
task set is schedulable, and we only construct a super-TEE when
Theorem 1 holds, the modified task set is also guaranteed to be
schedulable. While we cannot at this point provide any guarantee
on the schedulability of the modified task set if the original task
set is not schedulable, our approach can sometimes make the task
set schedulable as shown in the example below. We will also show
that our approach can in fact improve schedulability under many
scenarios as discussed in Section 7.

4.4.1 Example: Let us consider the task set in Table 7, which
fails the RM schedulability test according to Equation 1. Applying
our approach, the modified task set is shown in Table 9 and contains
a task tuple {τ1,τ3} fused to form a super-TEE according to Sec-
tion 4.5, and an individual task τ2. Although the super-TEE has a
modified worst-case execution time and period, it passes the feasi-
bility test outlined above. Since the utilization of this modified task
set falls within the LL limit (Equation 1), the tasks are guaranteed to
be schedulable using RM.

4.5 Finding Super-TEE Candidates
Now that we have explained how to construct a super-TEE and
find its aggregated utilization, we turn our attention to selecting the

7

Table 9: Optimized Task Set

Task (τ) Cpeak Cnml T l

{τ1 , τ3 } 1.2 1 2 1
τ2 0.6 0.6 8 –

actual tasks best suited to form a super-TEE. The first step is to
ensure that constructing a super-TEE does not negatively impact
the schedulability of the entire system, as discussed in the previous
section. Therefore, we apply Theorem 1 to all possible combination
of task-tuples {τi ,τj } to check for a feasible taskset. Once the fea-
sibility criterion is met, every possible combination of task-tuple
{τi ,τj }, τi ,τj ∈ Ψ, is profiled for its execution pattern, concurrent
job instances, maximum execution overlap duration, and combined
secure cache footprint. This is a computationally intensive process,
but only needs to be performed once offline. Given all the combina-
tion of task-tuples, our goal is to eliminate infeasible task-tuples and
rank the remaining ones. Task-tuples whose secure cache footprint
exceeds the maximum cache size of a core is removed from further
consideration; architecturally, the execution overhead of an appli-
cation significantly reduces if it experiences a low cache miss rate.
By only considering task-tuples that are within the cache limit, we
avoid unnecessary cache misses, thereby reducing memory fetches
during application runtime and improve temporal predictability.

Since there may be a large number of task-tuples that are within
the cache limit, we propose to prioritize the task-tuples by their
concurrent job instances. For example, from Figure 3(b), we can
graphically deduce that a task-tuple {τ1,τ3} has a total of 4 concur-
rent job instances within the hyperperiod, while task-tuple {τ1,τ2}
has 1. Since the system saves CPU cycles every time the super-
TEE of a task-tuple executes (Lemma 2), the higher the frequency
of overlapping execution sections, the larger the increase in CPU
cycle savings. For instance, in Table 8, since {τ1,τ3} has max{#
Concurrent jobs}, it receives rank 1 (highest priority). Ties are bro-
ken in favor of task-tuples with the smallest interval of overlapping
execution sections, as smaller overlaps between execution intervals
of two tasks indicate higher compatibility for sequential execution
of the tasks under consideration [18]. Table 8 shows the ranked list
of all task-tuples from our example task set (Table 7).

The steps to determine the tasks to fuse together are shown in
Algorithm 1. The TupleList is the set of all task-tuples. Task-tuples
whose cache footprint exceeds FootprintLimit are discarded. For
each of the remaining task-tuples, SORT_CONCURRENT_COUNT()
calculates the number of concurrent jobs if the tasks in the task-tuple
were run in isolation till their hyperperiod, and sorts the tuples in a
non-increasing order. Finally, ties are broken by comparing the size
of overlaps to create a ranked TupleList .

5 CT-RM SCHEDULING ALGORITHM
To the best of our knowledge, there are no existing approaches to
schedule super-TEEs in a hard real-time system while providing
deadline guarantees. As such, we leverage an existing fixed-priority
rate-monotonic scheduling policy (RM-FF) to schedule super-TEEs,
along with other real-time tasks, on multicore systems. We opt
for partitioned scheduling since it has the advantage of reducing
the multiprocessor scheduling problem to scheduling on individual
processors. In addition, since our task set consists of normal real-
time tasks and super-TEEs, we modify RM-FF by changing the task

Algorithm 1 Task Fusion
1: function TUPLE_OPTIMIZATION(tupleList) ▷ Rank task tuples
2: for {τi , τj } ∈ tupleList do
3: if CACHE_FOOTPRINT({τi , τj }) >Footpr intLimit then
4: REMOVE_TUPLE(tupleList, τi , τj)
5: SORT_CONCURRENT_COUNT(tupleList) ▷ Non-increasing
6: for tuple1, tuple2 ∈ tupleList do
7: if tuple1.over lap == tuple2.over lap then
8: SORT_OVERLAP_SIZE(tuple1, tuple2) ▷ Non-decreasing
9: function FIND_CANDIDATE(τi , τj) ▷ Check feasibility: Theorem 1

10: if
Cj
C′j
≥

Tj
Ti

and 2 · Ti − дcd (Ti , Tj) ≤ Tj then return 1

11: else return 0
12: ▷ Generate multi-frame task parameters for feasible super-TEEs
13: function CONSTRUCT_SUPERTEE(tupleList)
14: for {τi , τj } ∈ tupleList do
15: if FIND_CANDIDATE({τi , τj }) then
16: Assign Cpeak

ij using Equation 2

17: Assign Cnml
ij using Equation 3

18: Assign lij using Equation 4
19: else
20: REMOVE_TUPLE(tupleList, τi , τj)
21: function MAIN(tupleList)
22: CONSTRUCT_SUPERTEE(tupleList)
23: TUPLE_OPTIMIZATION(tupleList)
24: return

partitioning policy. The advantages of our modifications are apparent
when discussed in Section 6.

We first define a TupleList , which consists of a list of task-tuples,
e.g., (τi ,τj), where τi and τj form a super-TEE (Section 4.5). We sort
task-tuples in a non-decreasing order of periods to obtain the worst-
case critical instant [23]. We divide the task-to-core assignment
step into two phases (Algorithm 2). In the first phase, we leverage
the existing RM First-Fit (RM-FF) partitioning policy, where tasks
are assigned to a core until it is no longer RM schedulable, after
which, the next core is considered [23], to assign tuples (super-
TEEs) to cores. We set per-core admissible utilization bound to the
LL limit (Equation 1). (A worst-case response time analysis can be
used instead and is left for future work.) Lines [3-6] in Algorithm 2
performs the first phase of task-to-core mapping using the first-fit
policy. In the second phase, we turn our attention to RemTaskList ,
which consists of tasks which are not part ofTupleList . Lines [10-13]
in Algorithm 2 performs the second phase of task-to-core mapping,
again, using the first-fit policy after having sorted the tasks in a
non-decreasing order of periods.

Algorithm 2 Task-to-Core Mapping
1: function TASK_TO_CORE(TupleList, TaskList, Cores)
2: Umax ← LL limit ▷ Check for LL bound: Equation 1
3: for {τi , τj } ∈ TupleList do ▷ Assign tuple to core
4: {τi , τj }.Core ← FIRST_FIT({τi , τj }, Umax , Cores)
5: if ¬{τi , τj }.Core then ▷ If tuple assignment fails
6: REMOVE_TUPLE(TupleList, τi , τj)
7: RemTaskList ← TaskList −TupleList
8: RemTaskList ← SORT_INCREASING_PERIOD(RemTaskList)
9: ▷ Assign remaining tasks to cores

10: for task ∈ RemTaskList do
11: task .Core ← FIRST_FIT(task , Umax , Cores)
12: if ¬task .Core then ▷ If task assignment fails
13: exit ()

8

Table 10: Summary of experimental results of synthetic benchmark
(Figure 6) running on Rpi 3B using CT-RM and RM-FF with respect
to percentage of feasible task sets as a function of task set utilization.

Util (%) RM-FF CT-RM
Feasible task set (%) Feasible task set (%)

100 100 100
150 100 100
200 87 96
250 72 86
300 21 48

6 EXPERIMENTS
In this section, we evaluate the benefits of our proposed approach by
scheduling real-time synthetic benchmarks on an actual hardware
platform.

6.1 Experimental Setup
For our hardware testbed, we use the Raspberry Pi 3B (Rpi 3B),
a small computer with quad-core ARM Cortex A53 processor, 1
GB LPDDR RAM, and numerous sensors. It can run Linux and
other non-trusted operating systems. It also extends support for
ARM TrustZone. We used the Linux RT_PREEMPT Kernel v4.6.3
to build our prototype CT-RM by modifying the Linux real-time
scheduling class SCHED_DEADLINE. We run the modified real-
time Linux OS (as non-trusted OS) along with OP-TEE OS [13] (as
TEE) on the Rpi 3B that extends the support for ARM v8 embed-
ded virtualization. We also designed a task set generator to create
synthetic benchmark applications as shown in Figure 10. The in-
put to said task set generator are util_factor, tee_tasks
and tee_exec, where util_factor represents the task set uti-
lization level, tee_tasks denotes the number of tasks with TEE
requirements in each task set, and tee_exec is the maximum per-
centage of the worst-case execution time of each task that has to be
assigned for trusted execution in a TEE environment.

For the experimental results presented in Table 10, the task sets
were generated over a range of utilization levels (util_factor =
100%, 150%, 200%, . . ., 300%) and, for each utilization level, we
generated 100 task sets, each of which has a random number of tasks.
The period (Ti) and worst-case execution time (Ci) of each task are
randomly generated so long as the overall utilization of the task set
remains within the corresponding utilization level. The worst-case
execution time of a task τi is upper bounded by

∑2
q=1C

q
i +υi , where

C
q
i denotes each non-secure execution segments, and υi denotes the

trusted execution interval. Each task set consists of (tee_tasks =)
60% of the tasks with TEE requirements and 40% ordinary real-time
tasks. The trusted execution duration (υi = tee_exec) of each
TEE task is set at 60% of the worst-case execution time. The secure
cache size limit is set to a high 90% of the maximum cache size to
remove the effect of hardware-specific cache limit. We use all the 4
cores of Rpi 3B to run our experiments. Each experiment is carried
out for one hyperperiod, the least common multiple of the periods of
all the tasks in a task set. The results in Table 10 show an improved
usable utilization bound by 12%, on average by CT-RM over RM-FF
across all utilization levels (100%, 150%,. . ., 300%).

6.1.1 Case Study: We explain the implementation details for
scheduling CT-RM on tasks whose attributes are shown in Table 9,
along with another real-time task τ4 with attributes (2, 1, 1,−) (see

Section 4.3). The task set is scheduled on a 4-core platform. All
the tasks realize context-switching between non-trusted and trusted
environments through an INTERRUPTABLE sleep duration. Each
task starts as a completely fair scheduler (CFS) task which even-
tually switches to an RM task, and is distinguished from the other
by the scheduler through a bit combination realized through a tuple
(cpu, OPTEE_on, OPTEE_task) and communicated through a
custom syscall to the kernel. The cpu denotes the assigned core,
OPTEE_on categorizes CT-RM as the scheduling policy for the task
and the OPTEE_task bit distinguishes a Super-TEE task ({τ1,τ3})
from other real-time tasks (with or without TEE requirements). Note,
that CT-RM prohibits any task migration. Hence, we set the sched-
uler flag NR_CPUS_ALLOWED to #1 in the Linux scheduler. This
informs the scheduler that the current task will never be up for migra-
tion. We validate the task-to-core assignment, the desired real-time
characteristics and application’s flow of execution by tallying the
kernel log time stamps. Experiment log reveals that all the tasks
complete their execution by the deadlines and behave as expected.

7 SIMULATIONS
Since architecture-specific design of Rpi3B constrains the maxi-
mum available secure cache dedicated for TEE usage, our hardware
testbed is limited by the number of TEEs that can run simultane-
ously. Therefore, we extend the validation of our proposed approach
(CT-RM) and assess its real-time performance against RM-FF in a
simulated environment on randomly generated task sets. Similar to
our hardware experiments, we use the task set generator over a range
of utilization levels (util_factor = 100%, 150%, 200%, 250%,. . .,
1000%). For each utilization level, we generated 100 task sets, each
of which has a random number of tasks, of which tasks with TEE
sections have tee_exec ranging between 30% − 90%. For the re-
ported simulation result, each task set consists of (tee_tasks =)
60% tasks with TEE requirements. The secure cache size limit is set
to a high 90% of the maximum cache size to remove the effect of
hardware-specific cache limit. Each simulation run tests the feasibil-
ity of the generated task sets using the steps listed in Algorithm 2.

Figure 9 reports the average results comparing the performance of
CT-RM against RM-FF in terms of number of feasible synchronous
task sets as a function of utilization levels with scaling cores. Our re-
sults indicate that the region of improvement with our approach over
partitioned RM-FF with scaling utilization levels over increasing
core count widens, indicating a scalable solution. While we observe
a comparable performance between RM-FF and CT-RM for a 2-core
system (4% average improvement in task set feasibility across all uti-
lization levels), the effectiveness of our solution is more pronounced
in 8-core and 10-core system (23% and 34% average improvement in
task set feasibility respectively across all utilization levels). Overall,
the trend shows an improved feasibility of up to 38% and, 18% on
average over partitioned RM-FF across all utilization levels.

Since this work targets hard real-time systems, we further test the
applicability of our solution on tasks with harmonic periods, a subset
of synchronous task sets. Harmonic task sets are widely used in
industry applications, ranging from cyber-physical systems [24–26]
to control systems [27], as they allow 100% utilization to be realized
when using fixed-priority scheduling policy [28]. Comparing the
performance of CT-RM in terms of number of feasible harmonic

9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 100 120 140 160 180 200

Fe
a
si

b
le

 T
a
sk

 S
e
ts

 (
%

)

Utilization (%)

2-Core RM-FF
2-Core CT-RM

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 200 220 240 260 280 300 320 340

Fe
a
si

b
le

 T
a
sk

 S
e
ts

 (
%

)

Utilization (%)

4-Core RM-FF
4-Core CT-RM

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 300 320 340 360 380 400 420 440 460 480 500

Fe
a
si

b
le

 T
a
sk

 S
e
ts

 (
%

)

Utilization (%)

6-Core RM-FF
6-Core CT-RM

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 400 420 440 460 480 500 520 540 560 580 600 620 640

Fe
a
si

b
le

 T
a
sk

 S
e
ts

 (
%

)

Utilization (%)

8-Core RM-FF
8-Core CT-RM

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 500 520 540 560 580 600 620 640 660 680 700 720 740

Fe
a
si

b
le

 T
a
sk

 S
e
ts

 (
%

)

Utilization (%)

10-Core RM-FF
10-Core CT-RM

Figure 9: Simulation results showing the number of feasible synchronous task sets as a function of system utilization demand with scaling core count.

1 #define SCHED_DEADLINE 6 //Modified SCHED_DEADLINE for CT−RM
2 void *inc_x(void *x_void_ptr){ //Normal RM task body
3 ...

4 attrX.sched_policy= SCHED_DEADLINE;

5 ret = sched_setattr(0, &attrX, flags); //set CT−RM params
6 ...

7 while(++(*x_ptr) < 100); //normal computation
8 ...

9 return NULL;}

10 void *inc_y(void *y_void_ptr){//super−TEE task body
11 funcA(); //Non−trusted code: Task τ1
12 funcX(); //Non−trusted code: Task τ2
13 usleep(...); //simulate self−suspension for data dependency
14 ...

15 funcC()//Rest of non−trusted code: Task τ1
16 funcZ()//Rest of non−trusted code: Task τ2
17 }

18 void *inc_z(void *z_void_ptr){//fused TEE section
19 *'\colorbox{light-gray}{//Start TEE execution}'*
20 TEEC_InitializeContext(NULL, &ctx);

21 TEEC_OpenSession(&ctx,&sess,&uuid,..);

22 TEEC_InvokeCommand(funcB,...);//TEE call: Task τ1
23 TEEC_InvokeCommand(funcY,...);//TEE call: Task τ2
24 TEEC_CloseSession(&sess);

25 TEEC_FinalizeContext(&ctx);

26 *'{\colorbox{light-gray}{//End TEE execution}'*
27 ...}

28 int main(){ //Main CFS task to spawn other SCHED_DEADLINE tasks
29 syscall(288, 1, 1, 0); //independent RT task to run on core #1
30 pthread_create(&inc_x_thread, NULL, inc_x, &x);

31 syscall(288, 2, 1, 0); //super−TEE task to run on core #2
32 pthread_create(&inc_y_thread, NULL, inc_y, &x);

33 while(...){}//wait for TEE execution
34 syscall(288, 2, 1, 1); //fused TEE section to run on core #2
35 pthread_create(&inc_z_thread, NULL, inc_z, &z);

36 // wait for tasks to end
37 return 0; }

Figure 10: Code snippet of our representative benchmark application
modeling the super-TEE shown in Figure 6.

task sets as a function of utilization levels with scaling cores show
improved feasibility of 20% on average over partitioned RM-FF
across all utilization levels.

8 RELATED WORK
Security for embedded hardware and/or software is a main focus
of recent work [29, 30]. For real-time systems, the emphasis is
usually on the trade-off between real-time constraints and security
levels [31, 32]. Hasan et al. [33] created a security policy to realize

a fixed-priority sporadic server. Our work, however, is orthogonal to
existing work and can be used in conjunction rather than instead of.

ARM TrustZone is a widely used platform-level security solution
for many real-time embedded systems with security requirements.
For instance, virtualization solutions [2, 3] allow Linux OS and
TEE to run simultaneously while maintaining real-time performance.
Pinto et al. [34] used the ARM TrustZone to run a low priority thread
of a real-time OS over secure virtualization. OP-TEE [13], which
is an open source port of TEE-specific design for Linux running
on the ARM hardware platform, was used to run trusted sections
alongside a real-time Linux environment [35]. Similarly, Pinto et
al. [34] created a FreeRTOS based execution environment where
the trusted code is run on the ARM TrustZone as a low priority
thread of an RTOS. All existing work, however, ignore the overhead
associated with TEE and its impacts on hard real-time deadlines.

9 CONCLUSIONS
We tackled the challenges associated with using TEE in hard real-
time systems without affecting the security and isolation features of
TEE, nor requiring source code modifications. We introduced the
concept of super-TEEs, where multiple secure sections or application
code that require TEE execution, are fused together to amortize
TEE execution overhead while maintaining logical correctness and
improving timing predictability through reduced I/O and switches
between non-secure mode and TEE mode of execution. To schedule
super-TEEs, we presented a sufficient condition for schedulability
for uniprocessors and a fixed-priority task assignment and scheduling
algorithm (CT-RM) for multicore systems. Experimental results on
a real hardware platform show that CT-RM improves the usable
utilization over RM-FF by up to 27% and, 12% on average, and are
confirmed by simulations.

REFERENCES
[1] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment:

what it is, and what it is not,” in Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 1,
pp. 57–64, IEEE, 2015.

10

[2] T. Frenzel, A. Lackorzynski, A. Warg, and H. Härtig, “Arm trustzone as a virtu-
alization technique in embedded systems,” in Proceedings of Twelfth Real-Time
Linux Workshop, Nairobi, Kenya, 2010.

[3] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “LTZVisor: TrustZone
is the Key,” in 29th Euromicro Conference on Real-Time Systems (ECRTS 2017)
(M. Bertogna, ed.), vol. 76 of Leibniz International Proceedings in Informatics
(LIPIcs), (Dagstuhl, Germany), pp. 4:1–4:22, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017.

[4] D. C. Challener and D. R. Safford, “Encrypted file system using tcpa,” Mar. 11
2008. US Patent 7,343,493.

[5] S. M. Darwish, S. K. Guirguis, and M. S. Zalat, “Stealthy code obfuscation
technique for software security,” in Computer Engineering and Systems (ICCES),
2010 International Conference on, pp. 93–99, IEEE, 2010.

[6] Y. Liu, K. An, and E. Tilevich, “Rt-trust: automated refactoring for trusted exe-
cution under real-time constraints,” in Proceedings of the 17th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences,
pp. 175–187, ACM, 2018.

[7] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, “Trustzone explained:
Architectural features and use cases,” in 2016 IEEE 2nd International Conference
on Collaboration and Internet Computing (CIC), pp. 445–451, IEEE, 2016.

[8] R. Pettersen, H. D. Johansen, and D. Johansen, “Secure edge computing with arm
trustzone.,” in IoTBDS, pp. 102–109, 2017.

[9] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger, “Trustshadow:
Secure execution of unmodified applications with arm trustzone,” in Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications,
and Services, pp. 488–501, ACM, 2017.

[10] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du, “Truz-droid:
Integrating trustzone with mobile operating system,” in Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’18, (New York, NY, USA), pp. 14–27, ACM, 2018.

[11] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz: Virtualizing arm
trustzone,” in In Proc. of the 26th USENIX Security Symposium, 2017.

[12] ARM, “Security technology building a secure system using trustzone technology
(white paper),” ARM Limited, 2009.

[13] “OP-TEE (Open Portable Trusted Execution Environment).” https://www.op-tee.
org/. Accessed: 2018-05-27.

[14] “GlobalPlatform Device Technology TEE Client API Specification.” https://www.
globalplatform.org/mediaguidetee.asp. Accessed: 2017-10-05.

[15] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1,
pp. 46–61, 1973.

[16] A. Díaz-Ramírez, P. Mejía-Alvarez, and L. E. Leyva-del Foyo, “Comprehensive
comparison of schedulability tests for uniprocessor rate-monotonic scheduling,”
Journal of applied research and technology, vol. 11, no. 3, pp. 408–436, 2013.

[17] M. Nasri and G. Fohler, “An efficient method for assigning harmonic periods to
hard real-time tasks with period ranges,” in 2015 27th Euromicro Conference on
Real-Time Systems, pp. 149–159, IEEE, 2015.

[18] C. Roig, A. Ripoll, and F. Guirado, “A new task graph model for mapping message
passing applications,” IEEE transactions on Parallel and Distributed Systems,
vol. 18, no. 12, pp. 1740–1753, 2007.

[19] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Armageddon: Cache
attacks on mobile devices,” in 25th {USENIX} Security Symposium ({USENIX}
Security 16), pp. 549–564, 2016.

[20] G. Irazoqui and X. Guo, “Cache side channel attack: Exploitability and counter-
measures,” Black Hat Asia, vol. 2017, 2017.

[21] V. Lesi, I. Jovanov, and M. Pajic, “Security-aware scheduling of embedded control
tasks,” ACM Transactions on Embedded Computing Systems (TECS), vol. 16,
no. 5s, p. 188, 2017.

[22] T. P. Baker and A. Shaw, “The cyclic executive model and ada,” Real-Time Systems,
vol. 1, no. 1, pp. 7–25, 1989.

[23] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,” Operations
research, vol. 26, no. 1, pp. 127–140, 1978.

[24] H. Li, J. Sweeney, K. Ramamritham, R. Grupen, and P. Shenoy, “Real-time support
for mobile robotics,” in The 9th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2003. Proceedings., pp. 10–18, IEEE, 2003.

[25] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings, “Using har-
monic task-sets to increase the schedulable utilization of cache-based preemptive
real-time systems,” in Proceedings of 3rd International Workshop on Real-Time
Computing Systems and Applications, pp. 195–202, IEEE, 1996.

[26] T. Taira, N. Kamata, and N. Yamasaki, “Design and implementation of reconfig-
urable modular humanoid robot architecture,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3566–3571, IEEE, 2005.

[27] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. D. Koutsoukos, and H. Wang, “Feed-
back thermal control for real-time systems,” in 2010 16th IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 111–120, IEEE, 2010.

[28] C.-C. Han and H.-Y. Tyan, “A better polynomial-time schedulability test for real-
time fixed-priority scheduling algorithms,” in Proceedings Real-Time Systems
Symposium, pp. 36–45, IEEE, 1997.

[29] K. Gai, L. Qiu, M. Chen, H. Zhao, and M. Qiu, “Sa-east: security-aware effi-
cient data transmission for its in mobile heterogeneous cloud computing,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 2, p. 60, 2017.

[30] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-wide security
testing of real-world embedded systems software,” in 27th USENIX Security
Symposium (USENIX Security 18), USENIX Association, 2018.

[31] Y. Ma, W. Jiang, N. Sang, and X. Zhang, “ARCSM: A distributed feedback control
mechanism for security-critical real-time system,” in Proc. Int. Symp. Parallel and
Distributed Processing with Applications, pp. 379–386, July 2012.

[32] K. Jiang, A. Lifa, P. Eles, Z. Peng, and W. Jiang, “Energy-aware design of secure
multi-mode real-time embedded systems with FPGA co-processors,” in Proc. Int.
Conf. Real-Time Networks and Systems, pp. 109–118, Oct. 2013.

[33] M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni, “Exploring opportunistic
execution for integrating security into legacy hard real-time systems,” in Real-Time
Systems Symposium (RTSS), 2016 IEEE, pp. 123–134, IEEE, 2016.

[34] S. Pinto, D. Oliveira, J. Pereira, J. Cabral, and A. Tavares, “Freetee: When real-
time and security meet,” in Emerging Technologies & Factory Automation (ETFA),
2015 IEEE 20th Conference on, pp. 1–4, IEEE, 2015.

[35] R. Liu and M. Srivastava, “Protc: Protecting drone’s peripherals through arm
trustzone,” in Proceedings of the 3rd Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications, pp. 1–6, ACM, 2017.

11

https://www.op-tee.org/
https://www.op-tee.org/
https://www.globalplatform.org/mediaguidetee.asp
https://www.globalplatform.org/mediaguidetee.asp

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 ARM TrustZone
	2.2 Open Portable Trusted Execution Environment (OP-TEE)
	2.3 System Model
	2.4 Creating Trusted Execution Segments

	3 Motivation
	4 Offline Super-TEE construction
	4.1 Task Partitioning and TEE Fusions
	4.2 Security Impacts
	4.3 Super-TEE Task Model
	4.4 Feasibility of Super-TEE Candidates
	4.5 Finding Super-TEE Candidates

	5 CT-RM Scheduling Algorithm
	6 Experiments
	6.1 Experimental Setup

	7 Simulations
	8 Related Work
	9 Conclusions
	References

